SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Konečný Patrik) "

Sökning: WFRF:(Konečný Patrik)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dunkley, Daniel J., et al. (författare)
  • Two Neoarchean tectonothermal events on the western edge of the North Atlantic Craton, as revealed by SIMS dating of the Saglek Block, Nain Province, Labrador
  • 2020
  • Ingår i: Journal of the Geological Society. - : Geological Society of London. - 0016-7649 .- 2041-479X. ; 177:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saglek Block forms the northern part of the Nain Province and underwent widespread metamorphism at c. 2.7 Ga, producing the dominant gneissosity and intercalation of supracrustal sequences. Zircon dating of gneiss samples collected along 80 km of the Labrador coast from Ramah Bay in the north to Hebron Fjord in the south confirms the widespread extent of high-grade metamorphism between 2750 and 2700 Ma. In addition, a distinct event between 2550 and 2510 Ma produced felsic melt with peritectic garnet in metavolcanic gneiss and granoblastic recrystallization in mafic granulite. Ductile deformation of granite emplaced at c. 2550 Ma indicates that this later event involved a degree of tectonism during high-T metamorphism. Such tectonism may be related to a hypothesized post-2.7 Ga juxtaposition of the predominantly Eoarchean Saglek Block against the Mesoarchean Hopedale Block, along a north–south boundary that extends from the coast near Nain to offshore of Saglek Bay. Evidence of reworking of c. 2.7 Ga gneisses by c. 2.5 Ga tectonothermal activity has been found elsewhere on the margins of the North Atlantic Craton, of which the Nain Province represents the western margin. In particular, a recent suggestion that c. 2.5 Ga metamorphic ages along the northern margin of the North Atlantic Craton in SW Greenland may record the final assembly of the craton could also apply to the western margin as represented by the rocks of the Nain Province.Supplementary material: Plots and geochemical data are available at https://doi.org/10.6084/m9.figshare.c.4567934
  •  
2.
  • Högdahl, Karin, et al. (författare)
  • Reactive monazite and robust zircon growth in diatexitesand leucogranites from a hot, slowly cooled orogen : implicationsfor the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden
  • 2012
  • Ingår i: Contributions to Mineralogy and Petrology. - : Springer Science and Business Media LLC. - 0010-7999 .- 1432-0967. ; 163:1, s. 167-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Monazite in melt-producing, poly-metamorphic terranes can grow, dissolve or reprecipitate at different stages during orogenic evolution particularly in hot, slowly cooling orogens such as the Svecofennian. Owing to the high heat flow in such orogens, small variations in pressure, temperature or deformation intensity may promote a mineral reaction. Monazite in diatexites and leucogranites from two Svecofennian domains yields older, coeval and younger U–Pb SIMS and EMP ages than zircon from the same rock. As zircon precipitated during the melt-bearing stage, its U–Pb ages reflect the timing of peak metamorphism, which is associated with partial melting and leucogranite formation. In one of the domains, the Granite and Diatexite Belt, zircon ages range between 1.87 and 1.86 Ga, whereas monazite yields two distinct double peaks at 1.87–1.86 and 1.82–1.80 Ga. The younger double peak is related to monazite growth or reprecipitation during subsolidus conditions associated with deformation along late-orogenic shear zones. Magmatic monazite in leucogranite records systematic variations in composition and age during growth that can be directly linked to Th/U ratios and preferential growth sites of zircon, reflecting the transition from melt to melt crystallisation of the magma. In the adjacent Ljusdal Domain, peak metamorphism in amphibolite facies occurred at 1.83–1.82 Ga as given by both zircon and monazite chronology. Pre-partial melting, 1.85 Ga contact metamorphic monazite is preserved, in spite of the high-grade overprint. By combining structural analysis, petrography and monazite and zircon geochronology, a metamorphic terrane boundary has been identified. It is concluded that the boundary formed by crustal shortening accommodated by major thrusting.
  •  
3.
  • Kusiak, Monika A., et al. (författare)
  • Peak to post-peak thermal history of the Saglek Block of Labrador : A multiphase and multi-instrumental approach to geochronology
  • 2018
  • Ingår i: Chemical Geology. - 0009-2541 .- 1872-6836. ; 484, s. 210-223
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saglek Block of coastal Labrador forms the western margin of the North Atlantic Craton, where Archean gneisses and granulites have been reworked during the Paleoproterozoic. Previous work has established that the block is a composite of Eoarchean to Mesoarchean protoliths metamorphosed to upper amphibolite and granulite facies at around 2.8–2.7Ga. New in-situ microbeam dating of accessory minerals in granoblastic gneisses reveals a complex peak to post-peak thermal history. Zircon growth at ca. 3.7–3.6Ga provides the age of formation of the tonalitic protoliths to the gneisses. Further zircon growth in syn-tectonic granitic gneiss and monazite growth in a variety of orthogneisses confirm peak metamorphic conditions at ca. 2.7Ga, but also reveal high-temperature conditions at ca. 2.6Ga and 2.5Ga. The former is interpreted as the waning stages of the 2.7Ga granulite event, whereas the latter is associated with a younger phase of granitic magmatism. In addition, apatite ages of ca. 2.2Ga may represent either cooling associated with the 2.5Ga event or a previously unrecognized greenschist-facies metamorphism event that predates the Torngat Orogeny.
  •  
4.
  • Majka, Jaroslaw, et al. (författare)
  • Multiple monazite growth in the Areskutan migmatite: evidence for a polymetamorphic Late Ordovician to Late Silurian evolution in the Seve Nappe Complex of west-central Jamtland, Sweden
  • 2012
  • Ingår i: Journal of Geosciences. - : Czech Geological Society. - 1802-6222 .- 1803-1943. ; 57:1, s. 3-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Monazite from granulite-facies rocks of the angstrom reskutan Nappe in the Scandinavian Caledonides (Seve Nappe Complex, Sweden) was dated using in-situ U-Th-total Pb chemical geochronology (CHIME). Multi-spot analyses of a non-sheared migmatite neosome yielded an age of 439 +/- 3 Ma, whereas a sheared migmatite gave 433 +/- 3 Ma (2 sigma). Although the obtained dates are rather similar, a continuous array of single dates from c. 400 Ma to c. 500 Ma suggests possibly a more complex monazite age pattern in the studied rocks. The grouping and recalculation of the obtained results in respect to Y-Th-U systematics and microtextural context allowed distinguishing several different populations of monazite grains/growth zones. In the migmatite neosome, low-Th and low-Y domains dated at 455 +/- 11 Ma are considered to have grown under high-grade sub-solidus conditions, most likely during a progressive burial metamorphic event. The monazites with higher Th and lower Y yielded an age of 439 +/- 4 Ma marking the subsequent partial melting event caused by decompression. The youngest (423 +/- 13 Ma) Y-enriched monazite reveals features of fluid-assisted growth and is interpreted to date the emplacement of the Areskutan onto the Lower Seve Nappe. In the sheared migmatite, the high-Th and low-U (high Th/U) monazite with variable Y contents yielded an age of 438 +/- 4 Ma, which is interpreted to date the partial melting event. Relatively U-rich rims on some of the monazite grains again reveal features of fluid-assisted growth, and thus their age of 424 +/- 6 Ma is interpreted as timing of the nappes emplacement. These results call, however, for further more precise, isotopic (preferably ion microprobe) dating of monazite in the studied rocks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy