SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Konnerth Johannes) "

Sökning: WFRF:(Konnerth Johannes)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Colson, Jérôme, et al. (författare)
  • Adhesion properties of regenerated lignocellulosic fibres towards poly(lactic acid) microspheres assessed by colloidal probe technique
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 532, s. 819-829
  • Tidskriftsartikel (refereegranskat)abstract
    • In the field of polymer reinforcement, it is important to understand the interactions involved between the polymer matrix and the reinforcing component. This paper is a contribution to the fundamental understanding of the adhesion mechanisms involved in natural fibre reinforced composites. We report on the use of the colloidal probe technique for the assessment of the adhesion behaviour between poly(lactic acid) microspheres and embedded cross-sections of regenerated lignocellulosic fibres. These fibres consisted of tailored mixtures of cellulose, lignin and xylan, the amount of which was determined beforehand. The influence of the chemical composition of the fibres on the adhesion behaviour was studied in ambient air and in dry atmosphere. In ambient air, capillary forces resulted in larger adhesion between the sphere and the fibres. Changing the ambient medium to a dry nitrogen atmosphere allowed reducing the capillary forces, leading to a drop in the adhesion forces. Differences between fibres of distinct chemical compositions could be measured only on freshly cut surfaces. Moreover, the surface energy of the fibres was assessed by inverse gas chromatography. Compared to fibres containing solely cellulose, the presence of lignin and/or hemicellulose led to higher adhesion and lower surface energy, suggesting that these chemicals could serve as natural coupling agents between hydrophobic and hydrophilic components.
  •  
2.
  • Frihart, Charles R., et al. (författare)
  • Joining and Reassembling of Wood
  • 2023
  • Ingår i: Springer Handbooks. - 2522-8692 .- 2522-8706. ; , s. 707-791
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Commonly the raw material round timber is reduced into smaller parts such as solid wood boards, sheets of veneer, strands, particles, and fibers for further manufacturing and processing. In following steps, the single wooden pieces are joined together by adhesive bonding to achieve the final structures such as various types of wood laminations or wood-based panels. This chapter describes the various mechanical connecting and adhesive bonding solutions. Different mechanical connector systems are introduced in theory and practice. A major part of the chapter is dedicated to wood adhesion and the basic aspects of the wood-adhesive interactions. Various adhesive types, their chemistries, morphologies, and their processes of solidification and curing are introduced, and additionally their utility in wood bonding is emphasized. Different methods of assessing and testing bond strength are also presented. Linear-friction wood welding, as an innovative approach for bonding, which is not yet fully established in practice, is also described. Pressing processes are indispensable in the various adhesive bonding processes of wood in order to produce wood-based materials from veneers, particles, and fibers. Different basic pressing types and press processes are given and are discussed with respect to their application.
  •  
3.
  • Gusenbauer, Claudia, et al. (författare)
  • Differences in surface chemistry of regenerated lignocellulose fibers determined by chemically sensitive scanning probe microscopy
  • 2020
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier BV. - 0141-8130 .- 1879-0003. ; 165, s. 2520-2527
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuning the composition of regenerated lignocellulosic fibers in the production process enables targeting of specific material properties. In composite materials, such properties could be manipulated by controlled heterogeneous distribution of chemical components of regenerated fibers. This attribute requires a visualization method to show their inherent chemical characteristics. We compared complementary microscopic techniques to analyze the surface chemistry of four differently tuned regenerated lignocellulosic fibers. Adhesion properties were visualized with chemical force microscopy and showed contrasts towards hydrophilic and hydrophobic atomic force microscopy tips. Fibers containing xylan showed heterogeneous adhesion properties within the fiber structure towards hydrophilic tips. Additionally, peak force infrared microscopy mapped spectroscopic contrasts with nanometer resolution and provided point infrared spectra, which were consistent to classical infrared microscopy data. With this setup, infrared signals with a spatial resolution below 20 nm reveal chemical gradients in specific fiber types.
  •  
4.
  • Jiang, Wen, 1990- (författare)
  • Acid-catalyzed Liquefaction of Industrial Side-streams for Producing Wood Adhesives and Particleboard
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Big quantities of residues and side-streams are generated annually from forest-based and agricultural industries all around the world and present a relatively unexplored renewable resource. Due to the absence of a regularly updated and systematic database of supply, industrial residues and side-streams usually end up in landfill disposal, are used for energy generation, or remain at the production sites. These renewable side-streams are mainly lignocellulosic materials that can be used for fuels, chemicals, and other value-added materials. However, the difficulty in recovering useful components from industrial wastes from a techno-economic point of view is hindering the use of these materials. There are different methods for converting biomass into fuels, chemicals, and materials, including thermochemical, biochemical, and physical conversion. Negative environmental impacts from direct incineration of waste materials and increasing interest in reducing the dependency on fossil-based sources have increased the need for the valorization of the industrial side-streams for material and chemical applications. Among the different thermochemical conversion methods, liquefaction of lignocellulosic materials is an efficient way to convert solid biomass into liquids. Liquefaction including hydrothermal liquefaction (HTL) and moderate acid-catalyzed liquefaction (MACL), is often carried out in an aqueous environment by employing organic solvents with or without catalyst under pressure or ambient conditions. A liquefaction process is influenced by many factors such as material type, solvent, catalyst, time, and temperature. All the parameters of the liquefaction are related to each other, and they affect the yields and the properties of the final products. Studies on the utilization of industrial waste and side-streams as feedstock for liquefaction have increased in recent years, generating significant interest from both academia and industry.  This PhD study included a literature review on liquefaction technologies that provide liquefied products for wood adhesives, followed by experimental work on MACL and its optimization for different industrial side-streams, such as wood sawdust, bark, and oat husks. Liquefaction of those materials led to different liquefaction yields (LY) due to their different chemical compositions. When the same liquefaction conditions were applied, liquefied wood sawdust had the highest LY while liquefied bark had the lowest. This was mainly attributed to wood sawdust having a higher cellulose and lower lignin content, when compared to bark and oat husks. After optimizing the liquefaction of wood sawdust, obtained products were applied in wood adhesive formulations successfully. Crude liquefied wood (CLW) and purified liquefied wood (PLW) polyols were obtained from the liquefaction of wood sawdust with the highest LY of 99.7% and used for the synthesis of polyurethane (PU) adhesives by reacting them with polymeric diphenylmethane diisocyanate (pMDI). The bonding strength and penetration to wood adherends of the PU adhesives were affected by the molar ratios between the isocyanate groups (NCO) in pMDI and the hydroxyl groups (OH) in the CLW and PLW. The highest bonding strength of PU adhesives was achieved at an NCO:OH molar ratio of 1.5:1. The thermal stability of the PU adhesives was improved by increasing the NCO:OH molar ratio. PU adhesives based on CLW and PLW with the same adhesive formulation did not show significant differences in their properties while CLW polyol contained more water and alcohols than PLW.  A novel method called partial liquefaction of lignocellulosic biomass was also proposed. Partially liquefied bark (PLB) was prepared and used to replace wood particles for producing particleboards (PB) with or without the presence of a commercial synthetic adhesive, i.e. melamine-urea-formaldehyde (MUF). PLB was shown to provide single-layer PBs with good adhesion, mechanical strength, and water repellency. The overall mechanical properties of non-MUF single-layer PBs were inferior to those of MUF-bonded PBs. Increasing the PLB content up to 9.5% led to enhanced mechanical properties for MUF-bonded PBs. PLB prepared from bark with a particle size less than 2 mm ensured good mechanical behavior of single-layer PBs. Moreover, three-layer particleboards prepared from PLB and wood particles had comparable mechanical properties to the reference PBs made solely from wood particles, and PLB had less influence on the mechanical properties of the PBs when used in the surface layer than in the core layer. Formaldehyde emissions from the three-layer PBs were below the limits required by European Standard EN 13986:2004 and major volatile organic compounds (VOCs) were carboxylic acids. This research provided a comprehensive understanding of converting different lignocellulosic materials by a MACL process into valuable polymers and raw materials, which are suitable for the synthesis of wood adhesives and for the manufacturing of particleboards. Due to time constraints related to conducting the PhD, it was not possible to conduct a full characterization of the liquefied products from the selected materials. Such studies should be part of future research in order to supplement our knowledge of MACL mechanisms. 
  •  
5.
  • Konnerth, Johannes, et al. (författare)
  • Macro- and micro-mechanical properties of red oak wood (Quercus rubra L.) treated with hemicellulases
  • 2010
  • Ingår i: Holzforschung. - : Walter de Gruyter GmbH. - 0018-3830 .- 1437-434X. ; 64:4, s. 447-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Red oak wood (Quercus rubra L.) samples were submitted to an enzymatic treatment with a commercial mixture of hemicellulases aiming at the selective depolymerization and removal of the hemicelluloses. Mechanical properties of treated samples were characterized and compared with untreated samples at two hierarchical levels. At the macrolevel, tensile properties revealed to be less sensitive to degradation of the cell wall matrix compared to compression and hardness properties. Results obtained through indentation at the microlevel indicated that hardness and the so-called reduced modulus of treated wood were significantly lowered. Accordingly, hardness and reduced elastic modulus have proven to be most sensitive to modification of the cell wall matrix by reducing the content of hemicelluloses. It is proposed that transversal and shear stresses, which are mainly carried by the cell wall matrix, are additional parameters having strong effects on elastic modulus obtained by nanoindentation. Micromechanical modeling was employed to confirm the observed changes. There is consistency between the measured and the modeled properties, obtained at both the microlevel and the macrolevel of wood.
  •  
6.
  • Nypelö, Tiina, 1982, et al. (författare)
  • Conversion of wood-biopolymers into macrofibers with tunable surface energy via dry-jet wet-spinning
  • 2018
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 25:9, s. 5297-5307
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface chemistry of regenerated all-wood-biopolymer fibers that are fine-tuned by composition of cellulose, lignin and xylan is elucidated via revealing their surface energy and adhesion. Xylan additive resulted in thin fibers and decreased surface energy of the fiber outer surfaces compared to the cellulose fibers, or when lignin was used as an additive. Lignin increased the water contact angle on the fiber surface and decreased adhesion force between the fiber cross section and a hydrophilic probe, confirming that lignin reduced fiber surface affinity to water. Lignin and xylan enabled fiber decoration with charged groups that could tune the adhesion force between the fiber and an AFM probe. The fibers swelled in water: the neat cellulose fiber cross section area increased 9.2%, the fibers with lignin as the main additive 9.1%, with xylan 6.8%, and the 3-component fibers 5.5%. This indicates that dimensional stability in elevated humidity is improved in the case of 3-component fiber compared to 2-component fibers. Xylan or lignin as an additive neither improved strength nor elongation at break. However, improved deformability was achieved when all the three components were incorporated into the fibers. Graphical Abstract: [Figure not available: see fulltext.].
  •  
7.
  •  
8.
  • Nypelö, Tiina, 1982, et al. (författare)
  • Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities
  • 2018
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 19:3, s. 973-979
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocellulose-based self-standing films are becoming a substrate for flexible electronics, diagnostics, and sensors. Strength and surface chemistry are vital variables for these film-based endeavors, the former is one of the assets of nanocellulose. To contribute to the latter, nanocellulose films are tuned with a side-specific functionalization, having an aldehyde and a carboxyl side. The functionalities were obtained combining premodification of the film components by periodate oxidation with ozone post-treatment. Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with an elastic modulus of 11 GPa. The ozone treatment of one film side induces conversion of the aldehyde into carboxyl functionalities. The ozone treatment on individual crystals was largely destructive. Remarkably, such degradation is not observed for the self-standing film, and the film strength at break is preserved. Preserving a physically intact film despite ozone treatment is a credit to using the dry film structure held together by interparticle covalent linkages. Additionally, gas-phase post-treatment avoids disintegration that could result from immersion into solvents. The crystalline cellulose "Janus" film is suggested as an interfacial component in biomaterial engineering, separation technology, or in layered composite materials for tunable affinity between the layers.
  •  
9.
  •  
10.
  • Todorovic, Tijana, 1986- (författare)
  • Polysaccharide-based wood adhesives
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • It is highly desirable to increase the use of renewable resources and reduce fossil-dependence due to sustainability concerns. As a consequence, it is expected that the use of the wood-based materials will increase in the future. Therefore, adhesives will have an important role since they allow for the use of lower-quality and recycled wood. At present, adhesives are mainly fossil-based and contain toxic components which can present a health risk. Extensive research is being conducted with the goal to replace fossil- with bio-based adhesives, and eliminate toxic components.In this work, several polysaccharides have been investigated as wood adhesives, of which wood hemicelluloses are an interesting alternative. When applied between wood veneers, wood hemicelluloses alone do not exhibit sufficient strength, but combined with chitosan, they exhibit impressive strength and even sufficient water resistance. Since the molecular weight of hemicelluloses can affect the adhesive performance, locust bean gum has been used as a model in order to investigate this effect. An optimal molecular weight, 320-530 kDa in this case, is necessary for achieving the highest bond strength. These adhesives also show promising results in particleboards, and their internal bond strength fulfills the standard requirements for P2 boards (SS-EN 319), which are commonly used for furniture in dry conditions. High mat moisture contents are necessary for sufficient hydration of polysaccharides and internal bond strength; hence, a high mat moisture content (35-45 %), a pressing temperature of 150 °C, and pressing time of 15 min, yielded strong particleboards with no signs of steam blistering or delamination.With the goal to partially replace fossil content in PVAc adhesives chitosan has been used in emulsion polymerization of VAc, as a surfactant and grafting site. Besides lowering the fossil content to 60 %, the water resistance was significantly improved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy