SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Konnov Alexander) "

Sökning: WFRF:(Konnov Alexander)

  • Resultat 1-10 av 125
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alekseev, Vladimir A., et al. (författare)
  • High-temperature oxidation of acetylene by N2O at high Ar dilution conditions and in laminar premixed C2H2 + O2 + N2 flames
  • 2022
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 238
  • Tidskriftsartikel (refereegranskat)abstract
    • High-temperature oxidation of acetylene (C2H2) is studied behind reflected shock waves and in laminar flames. Atomic resonance absorption spectroscopy (ARAS) is employed to record oxygen atom concentration profiles for the mixture of 10 ppm C2H2 + 10 ppm N2O + argon and temperatures from 1688 K to 3179 K, extending the range of such data available from the literature. Laminar burning velocity of C2H2 in a diluted oxidizer with 11–13% O2 in the O2 + N2 mixture is measured using the heat flux method and compared to the literature data for the 13% O2 mixture. An updated detailed kinetic mechanism is presented to model and analyze the results, and the selection of rate constants in the C2H2 sub-mechanism, whose importance was identified by the sensitivity analysis, is discussed. The performance of the new model is compared against several reaction schemes available from the literature, and kinetic differences between them are outlined. The new shock-wave data helped to improve the performance of the present model compared to its previous version. For the laminar flames, a particular importance of reactions involving C2H3 is identified, however, the reasons for the observed differences in model predictions are to a large extent located outside the C2H2 sub-mechanism, which were also identified.
  •  
2.
  • Savchenkova, Anna S., et al. (författare)
  • Mechanism and rate constants of the CH2 + CH2CO reactions in triplet and singlet states : A theoretical study
  • 2019
  • Ingår i: Journal of Computational Chemistry. - : Wiley. - 0192-8651 .- 1096-987X. ; 40:2, s. 387-399
  • Tidskriftsartikel (refereegranskat)abstract
    • Ab initio and density functional CCSD(T)-F12/cc-pVQZ-f12//B2PLYPD3/6-311G** calculations have been performed to unravel the reaction mechanism of triplet and singlet methylene CH2 with ketene CH2CO. The computed potential energy diagrams and molecular properties have been then utilized in Rice–Ramsperger–Kassel–Marcus-Master Equation (RRKM-ME) calculations of the reaction rate constants and product branching ratios combined with the use of nonadiabatic transition state theory for spin-forbidden triplet-singlet isomerization. The results indicate that the most important channels of the reaction of ketene with triplet methylene lead to the formation of the HCCO + CH3 and C2H4 + CO products, where the former channel is preferable at higher temperatures from 1000 K and above. In the C2H4 + CO product pair, the ethylene molecule can be formed either adiabatically in the triplet electronic state or via triplet-singlet intersystem crossing in the singlet electronic state occurring in the vicinity of the CH2COCH2 intermediate or along the pathway of CO elimination from the initial CH2CH2CO complex. The predominant products of the reaction of ketene with singlet methylene have been shown to be C2H4 + CO. The formation of these products mostly proceeds via a well-skipping mechanism but at high pressures may to some extent involve collisional stabilization of the CH3CHCO and cyclic CH2COCH2 intermediates followed by their thermal unimolecular decomposition. The calculated rate constants at different pressures from 0.01 to 100 atm have been fitted by the modified Arrhenius expressions in the temperature range of 300–3000 K, which are proposed for kinetic modeling of ketene reactions in combustion.
  •  
3.
  • Savchenkova, Anna S., et al. (författare)
  • Revisiting diacetyl and acetic acid flames : The role of the ketene + OH reaction
  • 2020
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 218, s. 28-41
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of the reaction of ketene with hydroxyl radical has been studied by ab initio CCSD(T)-F12/cc-pVQZ-F12//B3LYP/6-311G(d,p) calculations of the potential energy surface. Temperature- and pressure-dependent reaction rate constants have been computed using the RRKM-Master Equation and transition state theory methods in the temperature range of 300–3000 K and in the pressure range of 0.01–100 atm. Three main channels have been analyzed: through direct abstraction of H atoms or starting with OH addition to the terminal carbon and to the central carbon atoms. Major products identified agree with the recent theoretical studies, however, significant difference was found with the rate constants derived by Xu et al. [13] and Cavallotti et al. [11]. To investigate the impact of the choice of reactions between CH2CO and OH radicals on the predicted burning velocities of the flames sensitive to ketene chemistry, namely diacetyl and acetic acid flames, a detailed kinetic mechanism was updated with pertinent reactions suggested in the literature. Then the rate constants of four most important product channels of reaction CH2CO + OH forming HCCO + H2O, CH2OH + CO, CH3 + CO2 and CH2COOH from the present and from the recent theoretical studies were tested. Good agreement with the burning velocities of diacetyl + air flames was found for the present model, while the expressions from the literature underestimate them. On the contrary, any combination of the rate constants of reactions between ketene and hydroxyl radical overpredicts burning velocities of acetic acid + air flames, which strongly indicates that the kinetic model of acetic acid is most probably incomplete and requires consideration of additional reactions.
  •  
4.
  • Ahmed, Ahfaz, et al. (författare)
  • Kinetic modelling and experimental study of small esters : Methyl acetate and ethyl acetate
  • 2017
  • Ingår i: 11th Asia-Pacific Conference on Combustion, ASPACC 2017. ; 2017-December
  • Konferensbidrag (refereegranskat)abstract
    • A detailed chemical kinetic mechanism comprising methyl acetate and ethyl acetate has been developed based on the previous work by Westbrook et al. [1]. The newly developed kinetic mechanism has been updated with new reaction rates from recent theoretical studies. To validate this model, shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity was also performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios [ ~ 0.7-1.4]. The new mechanism shows significant improvement in prediction of experimental data over earlier model across the range of experiments.In this study, a detailed chemical kinetic model for methyl and ethyl acetate (Fig. 1) has been developed. This model is advanced from the mechanism proposed for laminar premixed flames by Westbrook and coworkers in 2009 [1]. Acetates studied in this work are both high RON fuels with suitable physical and chemical properties [Table 1] to be considered as potential fuels in advanced gasoline engines [4]. Shock tube experiments measuring ignition delay time have been conducted at 15 & 30 bar and equivalence ratio 0.5, 1.0 and 2.0. Another set of experiments measuring laminar burning velocity have also been performed on a heat flux burner at atmospheric pressure over wide range of equivalence ratios. The model developed in this work shows good agreement with ignition data and laminar burning velocity data across the temperature and equivalence ratio range respectively.
  •  
5.
  • Ahmed, Ahfaz, et al. (författare)
  • Small ester combustion chemistry : Computational kinetics and experimental study of methyl acetate and ethyl acetate
  • 2019
  • Ingår i: Proceedings of the Combustion Institute. - : Elsevier BV. - 1540-7489. ; 37:1, s. 419-428
  • Tidskriftsartikel (refereegranskat)abstract
    • Small esters represent an important class of high octane biofuels for advanced spark ignition engines. They qualify for stringent fuel screening standards and could be synthesized through various pathways. In this work, we performed a detailed investigation of the combustion of two small esters, MA (methyl acetate) and EA (ethyl acetate), including quantum chemistry calculations, experimental studies of combustion characteristics and kinetic model development. The quantum chemistry calculations were performed to obtain rates for H-atom abstraction reactions involved in the oxidation chemistry of these fuels. The series of experiments include: a shock tube study to measure ignition delays at 15 and 30 bar, 1000-1450 K and equivalence ratios of 0.5, 1.0 and 2.0; laminar burning velocity measurements in a heat flux burner over a range of equivalence ratios [0.7-1.4] at atmospheric pressure and temperatures of 298 and 338 K; and speciation measurements during oxidation in a jet-stirred reactor at 800-1100 K for MA and 650-1000 K for EA at equivalence ratios of 0.5, 1.0 and at atmospheric pressure. The developed chemical kinetic mechanism for MA and EA incorporates reaction rates and pathways from recent studies along with rates calculated in this work. The new mechanism shows generally good agreement in predicting experimental data across the broad range of experimental conditions. The experimental data, along with the developed kinetic model, provides a solid groundwork towards improving the understanding the combustion chemistry of smaller esters.
  •  
6.
  • Alekseev, Vladimir A., et al. (författare)
  • Data consistency of the burning velocity measurements using the heat flux method : Hydrogen flames
  • 2018
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 194, s. 28-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Consistent datasets of experiments are highly important both for validation and optimization of kinetic mechanisms. An analysis of the data consistency of all available burning velocity measurements of hydrogen flames using the heat flux method at atmospheric pressure is performed in the present work. A comparison of many experiments performed in several laboratories with different types of dilution by various inerts was guided by kinetic modeling using two kinetic mechanisms. Konnov (2015) and ELTE (Varga et al., 2016) models demonstrated a uniform trend at all conditions tested: the second mechanism predicts lower burning velocities which are in better agreement with the heat flux measurements from different groups. Some experimental datasets, however, significantly disagree with one or both models; these conditions were revisited experimentally in the present work. The laminar burning velocities of H2 + O2 + N2 mixtures with 7.7% O2 in O2 + N2 oxidizer and of 85:15 (H2 + N2) and 25:75 (H2 + N2) fuel mixtures with 12.5:87.5 (O2 + He) oxidizer have been measured. It was concluded that the results of Hermanns et al. (2007) are somewhat higher than those of other studies at similar conditions and a possible reason of this disagreement was suggested. Analysis of the measurements performed by Goswami et al. (2015) on a high-pressure installation suggests an equipment malfunction that led to the erroneous values of the equivalence ratio for hydrogen and syngas flames. The ELTE mechanism developed using an optimization approach shows a very good performance in predicting laminar burning velocities of hydrogen flames measured using the heat flux method.
  •  
7.
  • Alekseev, Vladimir A., et al. (författare)
  • Laminar burning velocities of methylcyclohexane + air flames at room and elevated temperatures : A comparative study
  • 2018
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 196, s. 99-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminar burning velocities of methylcyclohexane + air flames were determined using the heat flux method at atmospheric pressure and initial temperatures of 298–400 K. The measurements were performed on two experimental setups at Lund University and Samara National Research University. Our results obtained at the same initial temperatures are in good agreement. Consistency of the measurements performed at different temperatures was tested employing analysis of the temperature dependence of the burning velocities. This analysis revealed increased scatter in the burning velocity data at some equivalence ratios which may be attributed to the differences in the design of the burners used. New measurements were also compared to available literature data. Reasonably good agreement with the data of Kumar and Sung (2010) was observed at 400 K, with significantly higher burning velocities at the maximum at 353 K as compared to other studies from the literature. Predictions of two detailed reaction mechanisms developed for jet fuels – PoliMi and JetSurF 2.0 were compared with the present generally consistent measurements. The two kinetic models disagreed with each other, with the experimental data being located in between the model predictions. Sensitivity analysis revealed that behavior of the models is largely defined by C0–C2 chemistry. Comparison of the model predictions with the burning velocities of ethylene and methane showed the same trends in over- and under-predictions as for methylcyclohexane + air flames.
  •  
8.
  • Alekseev, Vladimir, et al. (författare)
  • Experimental Uncertainties of the Heat Flux Method for Measuring Burning Velocities
  • 2016
  • Ingår i: Combustion Science and Technology. - : Informa UK Limited. - 1563-521X .- 0010-2202. ; 188:6, s. 853-894
  • Tidskriftsartikel (refereegranskat)abstract
    • The laminar burning velocity is a fundamental property of combustiblemixtures important for kinetic model validation as well as for practicalapplications. Many efforts are directed towards its accurate determination.The heat flux method is one of the commonly recognized methodsfor measuring laminar burning velocity, however, the information on theaccuracy of the method is scattered in the literature. In the present work,an attempt wasmade to summarize and extend the available informationon the different factors contributing to the experimental uncertainty ofthe heat flux method. Experimental setup of the Lund University group,typical for the heat flux community, and the procedures used to determinethe burning velocity are described. Furthermore, the influence ofdifferent uncertainty factors, originating from each part of the setup, isanalyzed. Asymmetric heat fluxes and the method for determining flamesurface area were found to give an important contribution to the totalerror. As a result of this, some of the previously published data have beenre-evaluated. Finally, recommendations are presented on how to controlor reduce the uncertainties in the heat flux measurements, and possibledirections for future research, aimed at improvement of the accuracy andunderstanding of the method, are outlined.
  •  
9.
  • Alekseev, Vladimir, et al. (författare)
  • Laminar premixed flat non-stretched lean flames of hydrogen in air
  • 2015
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 162:10, s. 4063-4074
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminar burning velocity of lean hydrogen + air flames at standard conditions is still a debated topic in combustion. The existing burning velocity measurements possess a large spread due to the use of different measurement techniques and data processing approaches. The biggest uncertainty factor in these measurements comes from the necessity to perform extrapolation to the flat flame conditions, since all of the previously obtained data were recorded in stretched flames. In the present study, laminar burning velocity of lean hydrogen + air flames and its temperature dependence were for the first time studied in stretch-free flat flames on a heat flux burner. The equivalence ratio was varied from 0.375 to 0.5 and the range of the unburned gas temperatures was 278-358 K. The flat flames tended to form cells at adiabatic conditions, therefore special attention was paid to the issue of their appearance. The shape of the flames was monitored by taking OH* images with an EM-CCD camera. In most cases, the burning velocity had to be extrapolated from flat subadiabatic conditions, and the impact of this procedure was quantified by performing measurements in H-2 + air mixtures diluted by N-2. The effect of extrapolation was estimated to be of negligible importance for the flames at standard conditions. The measured burning velocities at 298 K showed an important difference to the previously obtained literature values. The temperature dependence of the burning velocity was extracted from the measured results. It was found to be in agreement with the trends predicted by the detailed kinetic modeling, as opposed to a vast majority of the available literature data. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
10.
  • Alekseev, Vladimir, et al. (författare)
  • The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism
  • 2015
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 162:5, s. 1884-1898
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames has been analyzed using an updated version of the Konnov detailed reaction mechanism for hydrogen. The contemporary choice of the reaction rate constants is provided with the emphasis on their uncertainties, and the analysis of the performance of the updated mechanism is presented and compared to the previous version for a wide range of validation cases: jet stirred and flow reactors; oxidation, decomposition and ignition in shock waves; ignition in rapid compression machines; laminar burning velocity and flame structure. An overall improvement of the mechanism performance was observed, particularly for the shock tube and flow reactor studies. Temperature dependence of the burning velocity, S-L, is commonly interpreted using the correlation S-L = S-L0 (T/T-0)(alpha). The updated mechanism was applied to study the behavior of the power exponent alpha for H-2 + O-2 + N-2 flames in a wide range of stoichiometry and dilution ratios. The simulations were compared to the available experimental results, either taken from the literature or evaluated in the present study from the existing burning velocity data. The equivalence ratio and N-2 content in the mixture were found to have significant influence on the temperature power exponent. The dependence of the temperature exponent on the fitting temperature range was observed and discussed. This effect was found to cause significant discrepancies in the burning velocities at high temperatures, if obtained with empirical correlation. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 125

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy