SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Koppen Gudrun) "

Search: WFRF:(Koppen Gudrun)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Covaci, Adrian, et al. (author)
  • Urinary BPA measurements in children and mothers from six European member states: Overall results and determinants of exposure.
  • 2015
  • In: Environmental Research. - : Elsevier BV. - 1096-0953 .- 0013-9351. ; 141:Oct 13, s. 77-85
  • Journal article (peer-reviewed)abstract
    • For the first time in Europe, both European-wide and country-specific levels of urinary Bisphenol A (BPA) were obtained through a harmonized protocol for participant recruitment, sampling and quality controlled biomarker analysis in the frame of the twin projects COPHES and DEMOCOPHES. 674 child-mother pairs were recruited through schools or population registers from six European member states (Belgium, Denmark, Luxembourg, Slovenia, Spain and Sweden). Children (5-12y) and mothers donated a urine sample. Information on socio-demographic characteristics, life style, dietary habits, and educational level of the parents was provided by mothers. After exclusion of urine samples with creatinine values below 300mg/L or above 3000mg/L, 653 children and 639 mothers remained for which BPA was measured. The geometric mean (with 95% confidence intervals) and 90th percentile were calculated for BPA separately in children and in mothers and were named "European reference values". After adjustment for confounders (age and creatinine), average exposure values in each country were compared with the mean of the "European reference values" by means of a weighted analysis of variance. Overall geometric means of all countries (95% CI) adjusted for urinary creatinine, age and gender were 2.04 (1.87-2.24) µg/L and 1.88 (1.71-2.07) µg/L for children (n=653) and mothers (n=639), respectively. Multiple regression analysis was used to identify significant environmental, geographical, personal or life style related determinants. Consumption of canned food and social class (represented by the highest educational level of the family) were the most important predictors for the urinary levels of BPA in mothers and children. The individual BPA levels in children were significantly correlated with the levels in their mothers (r=0.265, p<0.001), which may suggest a possible common environmental/dietary factor that influences the biomarker level in each pair. Exposure of the general European population was well below the current health-based guidance values and no participant had BPA values higher than the health-based guidance values.
  •  
2.
  • Schindler, Birgit Karin, et al. (author)
  • The European COPHES/DEMOCOPHES project: Towards transnational comparability and reliability of human biomonitoring results.
  • 2014
  • In: International Journal of Hygiene and Environmental Health. - : Elsevier BV. - 1618-131X .- 1438-4639. ; 217:6, s. 653-661
  • Journal article (peer-reviewed)abstract
    • COPHES/DEMOCOPHES has its origins in the European Environment and Health Action Plan of 2004 to "develop a coherent approach on human biomonitoring (HBM) in Europe". Within this twin-project it was targeted to collect specimens from 120 mother-child-pairs in each of the 17 participating European countries. These specimens were investigated for six biomarkers (mercury in hair; creatinine, cotinine, cadmium, phthalate metabolites and bisphenol A in urine). The results for mercury in hair are described in a separate paper. Each participating member state was requested to contract laboratories, for capacity building reasons ideally within its borders, carrying out the chemical analyses. To ensure comparability of analytical data a Quality Assurance Unit (QAU) was established which provided the participating laboratories with standard operating procedures (SOP) and with control material. This material was specially prepared from native, non-spiked, pooled urine samples and was tested for homogeneity and stability. Four external quality assessment exercises were carried out. Highly esteemed laboratories from all over the world served as reference laboratories. Web conferences after each external quality assessment exercise functioned as a new and effective tool to improve analytical performance, to build capacity and to educate less experienced laboratories. Of the 38 laboratories participating in the quality assurance exercises 14 laboratories qualified for cadmium, 14 for creatinine, 9 for cotinine, 7 for phthalate metabolites and 5 for bisphenol A in urine. In the last of the four external quality assessment exercises the laboratories that qualified for DEMOCOPHES performed the determinations in urine with relative standard deviations (low/high concentration) of 18.0/2.1% for cotinine, 14.8/5.1% for cadmium, 4.7/3.4% for creatinine. Relative standard deviations for the newly emerging biomarkers were higher, with values between 13.5 and 20.5% for bisphenol A and between 18.9 and 45.3% for the phthalate metabolites. Plausibility control of the HBM results of all participating countries disclosed analytical shortcomings in the determination of Cd when using certain ICP/MS methods. Results were corrected by reanalyzes. The COPHES/DEMOCOPHES project for the first time succeeded in performing a harmonized pan-European HBM project. All data raised have to be regarded as utmost reliable according to the highest international state of the art, since highly renowned laboratories functioned as reference laboratories. The procedure described here, that has shown its success, can be used as a blueprint for future transnational, multicentre HBM projects.
  •  
3.
  • van Meel, Evelien R., et al. (author)
  • Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: a meta-analysis of 150 000 European children
  • 2022
  • In: European Respiratory Journal. - : EUROPEAN RESPIRATORY SOC JOURNALS LTD. - 0903-1936 .- 1399-3003. ; 60:4
  • Journal article (peer-reviewed)abstract
    • Background Early-life respiratory tract infections might affect chronic obstructive respiratory diseases, but conclusive studies from general populations are lacking. Our objective was to examine if children with early-life respiratory tract infections had increased risks of lower lung function and asthma at school age. Methods We used individual participant data of 150 090 children primarily from the EU Child Cohort Network to examine the associations of upper and lower respiratory tract infections from age 6 months to 5 years with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, forced expiratory flow at 75% of FVC (FEF75%) and asthma at a median (range) age of 7 (4-15) years. Results Children with early-life lower, not upper, respiratory tract infections had a lower school-age FEV1, FEV1/FVC and FEF75% (z-score range: -0.09 (95% CI -0.14- -0.04) to -0.30 (95% CI -0.36- -0.24)). Children with early-life lower respiratory tract infections had a higher increased risk of school-age asthma than those with upper respiratory tract infections (OR range: 2.10 (95% CI 1.98-2.22) to 6.30 (95% CI 5.64-7.04) and 1.25 (95% CI 1.18-1.32) to 1.55 (95% CI 1.47-1.65), respectively). Adjustment for preceding respiratory tract infections slightly decreased the strength of the effects. Observed associations were similar for those with and without early-life wheezing as a proxy for early-life asthma. Conclusions Our findings suggest that early-life respiratory tract infections affect development of chronic obstructive respiratory diseases in later life, with the strongest effects for lower respiratory tract infections.
  •  
4.
  • Velimirovic, Milica, et al. (author)
  • Mass spectrometry as a powerful analytical tool for the characterization of indoor airborne microplastics and nanoplastics
  • 2021
  • In: Journal of Analytical Atomic Spectrometry. - : Royal Society of Chemistry. - 0267-9477 .- 1364-5544. ; 36:4, s. 695-705
  • Research review (peer-reviewed)abstract
    • Development of analytical methods for the characterization (particle size determination, chemical identification, and quantification) of the low mu m-range microplastics (MPs; 1-10 mu m) and nanoplastics (NPs; 1 nm to 1 mu m) in air - coarse (PM10; <10 mu m), fine (PM2.5; <2.5 mu m) and ultrafine (PM1; <1 mu m) particulate matter - is a quickly emerging scientific field as inhalation has been identified as one of the main routes of human exposure. The respiratory tract may serve as both target tissue and port of entry to the systemic circulation for the inhaled MPs and NPs with their small particle size. As an outcome, the interest of the scientific community, policy makers, and the general public in indoor airborne MPs and NPs increased tremendously. However, there is a lack of detailed knowledge on the indoor and outdoor sources of MPs and NPs, their levels, and their health impact. This is mainly related to a lack of standardized sampling and analytical methods for size determination, chemical identification, and quantification. In this review, recent developments in mass spectrometry-based analytical methods for size determination, chemical identification, and quantification of the MPs and NPs in indoor air and dust, are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view