SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Korecka A) "

Sökning: WFRF:(Korecka A)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vogel, Jacob W., et al. (författare)
  • Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:5, s. 871-881
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging. © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
2.
  • Zhou, XP, et al. (författare)
  • Non-coding variability at the APOE locus contributes to the Alzheimer's risk
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 3310-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a leading cause of mortality in the elderly. While the coding change of APOE-ε4 is a key risk factor for late-onset AD and has been believed to be the only risk factor in the APOE locus, it does not fully explain the risk effect conferred by the locus. Here, we report the identification of AD causal variants in PVRL2 and APOC1 regions in proximity to APOE and define common risk haplotypes independent of APOE-ε4 coding change. These risk haplotypes are associated with changes of AD-related endophenotypes including cognitive performance, and altered expression of APOE and its nearby genes in the human brain and blood. High-throughput genome-wide chromosome conformation capture analysis further supports the roles of these risk haplotypes in modulating chromatin states and gene expression in the brain. Our findings provide compelling evidence for additional risk factors in the APOE locus that contribute to AD pathogenesis.
  •  
3.
  •  
4.
  • Korecka, A, et al. (författare)
  • Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism
  • 2016
  • Ingår i: NPJ biofilms and microbiomes. - : Springer Science and Business Media LLC. - 2055-5008. ; 2, s. 16014-
  • Tidskriftsartikel (refereegranskat)abstract
    • The ligand-induced transcription factor, aryl hydrocarbon receptor (AhR) is known for its capacity to tune adaptive immunity and xenobiotic metabolism—biological properties subject to regulation by the indigenous microbiome. The objective of this study was to probe the postulated microbiome-AhR crosstalk and whether such an axis could influence metabolic homeostasis of the host. Utilising a systems-biology approach combining in-depth 1H-NMR-based metabonomics (plasma, liver and skeletal muscle) with microbiome profiling (small intestine, colon and faeces) of AhR knockout (AhR−/−) and wild-type (AhR+/+) mice, we assessed AhR function in host metabolism. Microbiome metabolites such as short-chain fatty acids were found to regulate AhR and its target genes in liver and intestine. The AhR signalling pathway, in turn, was able to influence microbiome composition in the small intestine as evident from microbiota profiling of the AhR+/+ and AhR−/− mice fed with diet enriched with a specific AhR ligand or diet depleted of any known AhR ligands. The AhR−/− mice also displayed increased levels of corticosterol and alanine in serum. In addition, activation of gluconeogenic genes in the AhR−/− mice was indicative of on-going metabolic stress. Reduced levels of ketone bodies and reduced expression of genes involved in fatty acid metabolism in the liver further underscored this observation. Interestingly, exposing AhR−/− mice to a high-fat diet showed resilience to glucose intolerance. Our data suggest the existence of a bidirectional AhR-microbiome axis, which influences host metabolic pathways.
  •  
5.
  • Montagner, A, et al. (författare)
  • Erratum: Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 23951-
  • Tidskriftsartikel (refereegranskat)abstract
    • Scientific Reports 6: Article number: 20127; published online: 16 February 2016; updated: 20 April 2016. The original version of this Article contained an error in the spelling of the author Maha Al-Asmakh, which was incorrectly given as Al-Asmakh Maha. This has now been corrected in the PDF and HTML versions of the Article.
  •  
6.
  • Montagner, A, et al. (författare)
  • Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 20127-
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose and xenobiotic metabolism, protein turnover and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.
  •  
7.
  • Pannee, Josef, 1979, et al. (författare)
  • The global Alzheimer's Association round robin study on plasma amyloid beta methods
  • 2021
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Blood-based assays to measure brain amyloid beta (A beta) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure A beta and how they compare among centers and assays. Methods Aliquots from 81 plasma samples were distributed to 10 participating centers. Seven immunological assays and four mass-spectrometric methods were used to measure plasma A beta concentrations. Results Correlations were weak for A beta 42 while A beta 40 correlations were stronger. The ratio A beta 42/A beta 40 did not improve the correlations and showed weak correlations. Discussion The poor correlations for A beta 42 in plasma might have several potential explanations, such as the high levels of plasma proteins (compared to CSF), sensitivity to pre-analytical sample handling and specificity, and cross-reactivity of different antibodies. Different methods might also measure different pools of plasma A beta 42. We, however, hypothesize that greater correlations might be seen in future studies because many of the methods have been refined during completion of this study.
  •  
8.
  • Kang, J. H., et al. (författare)
  • The Alzheimer's Disease Neuroimaging Initiative 2 Biomarker Core: A review of progress and plans
  • 2015
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:7, s. 772-791
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We describe Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core progress including: the Biobank; cerebrospinal fluid (CSF) amyloid beta (A beta(1-42)), t-tau, and p-tau(181) analytical performance, definition of Alzheimer's disease (AD) profile for plaque, and tangle burden detection and increased risk for progression to AD; AD disease heterogeneity; progress in standardization; and new studies using ADNI biofluids. Methods: Review publications authored or coauthored by ADNI Biomarker core faculty and selected non-ADNI studies to deepen the understanding and interpretation ofCSFA beta(1-42), t-tau, and p-tau(181) data. Results: CSFAD biomarker measurements with the qualified AlzBio3 immunoassay detects neuropathologic AD hallmarks in preclinical and prodromal disease stages, based on CSF studies in nonADNI living subjects followed by the autopsy confirmation of AD. Collaboration across ADNI cores generated the temporal ordering model of AD biomarkers varying across individuals because of genetic/environmental factors that increase/decrease resilience to AD pathologies. Discussion: Further studies will refine this model and enable the use of biomarkers studied in ADNI clinically and in disease-modifying therapeutic trials. (C) 2015 Published by Elsevier Inc. on behalf of the Alzheimer's Association.
  •  
9.
  • Korecka, A, et al. (författare)
  • ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways
  • 2013
  • Ingår i: American journal of physiology. Gastrointestinal and liver physiology. - : American Physiological Society. - 1522-1547 .- 0193-1857. ; 304:11, s. G1025-G1037
  • Tidskriftsartikel (refereegranskat)abstract
    • Short-chain fatty acids (SCFAs), such as butyrate and propionate, are metabolic products of carbohydrate fermentation by the microbiota and constitute the main source of energy for host colonocytes. SCFAs are also important for gastrointestinal health, immunity, and host metabolism. Intestinally produced angiopoietin-like protein 4 (ANGPTL4) is a secreted protein with metabolism-altering properties and may offer a route by which microbiota can regulate host metabolism. Peroxisome proliferator-activated receptor (PPAR)-γ has previously been shown to be involved in microbiota-induced expression of intestinal ANGPTL4, but the role of bacterial metabolites in this process has remained elusive. Here, we show that the SCFA butyrate regulates intestinal ANGPTL4 expression in a PPAR-γ-independent manner. Although PPAR-γ is not required for butyrate-driven intestinal ANGPTL4 expression, costimulating with PPAR-γ ligands and SCFAs leads to additive increases in ANGPTL4 levels. We suggest that PPAR-γ and butyrate rely on two separate regulatory sites, a PPAR-responsive element downstream the transcription start site and a butyrate-responsive element(s) within the promoter region, 0.5 kb upstream of the transcription start site. Furthermore, butyrate gavage and colonization with Clostridium tyrobutyricum, a SCFA producer, can independently induce expression of intestinal ANGPTL4 in germ-free mice. Thus, oral administration of SCFA or use of SCFA-producing bacteria may be additional routes to maintain intestinal ANGPTL4 levels for preventive nutrition or therapeutic purposes.
  •  
10.
  • Boulo, S., et al. (författare)
  • First amyloid β1-42 certified reference material for re-calibrating commercial immunoassays
  • 2020
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 16:11, s. 1493-1503
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Reference materials based on human cerebrospinal fluid were certified for the mass concentration of amyloid beta (Aβ)1-42 (Aβ42). They are intended to be used to calibrate diagnostic assays for Aβ42. Methods: The three certified reference materials (CRMs), ERM-DA480/IFCC, ERM-DA481/IFCC and ERM-DA482/IFCC, were prepared at three concentration levels and characterized using isotope dilution mass spectrometry methods. Roche, EUROIMMUN, and Fujirebio used the three CRMs to re-calibrate their immunoassays. Results: The certified Aβ42 mass concentrations in ERM-DA480/IFCC, ERM-DA481/IFCC, and ERM-DA482/IFCC are 0.45, 0.72, and 1.22μg/L, respectively, with expanded uncertainties (k=2) of 0.07, 0.11, and 0.18μg/L, respectively. Before re-calibration, a good correlation (Pearson's r>0.97), yet large biases, were observed between results from different commercial assays. After re-calibration the between-assay bias was reduced to<5%. Discussion: The Aβ42 CRMs can ensure the equivalence of results between methods and across platforms for the measurement of Aβ42. © 2020 the Alzheimer's Association
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy