SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Korelskiy Danil) "

Sökning: WFRF:(Korelskiy Danil)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akhtar, Farid, et al. (författare)
  • Preparation of graded silicalite-1 substrates for all-zeolite membranes with excellent CO2/H-2 separation performance
  • 2015
  • Ingår i: Journal of Membrane Science. - : Elsevier BV. - 0376-7388 .- 1873-3123. ; 493, s. 206-211
  • Tidskriftsartikel (refereegranskat)abstract
    • Graded silicalite-1 substrates with a high gas permeability and low surface roughness have been produced by pulsed current processing of a thin coating of a submicron silicalite-1 powder onto a powder body of coarser silicalite-1 crystals. Thin zeolite films have been hydrothermally grown onto the graded silicalite-1 support and the all-zeolite membranes display an excellent CO2/H-2 separation factor of 12 at 0 degrees C and a CO2 permeance of 21.3 x 10(-7) mol m(-2) s(-1) Pa-1 for an equimolar CO2/H-2 feed at 505 kPa and 101 kPa helium sweep gas. Thermal cracking estimates based on calculated surface energies and measured thermal expansion coefficients suggest that all-zeolite membranes with a minimal thermal expansion mismatch between the graded substrate and the zeolite film should remain crack-free during thermal cycling and the critical calcination step.
  •  
2.
  • Faisal, Abrar, et al. (författare)
  • MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broths
  • 2014
  • Ingår i: Adsorption. - : Springer Science and Business Media LLC. - 0929-5607 .- 1572-8757. ; 20:2-3, s. 465-470
  • Tidskriftsartikel (refereegranskat)abstract
    • 1-Butanol and butyric acid are two interesting compounds that may be produced by acetone, butanol, and ethanol fermentation using e.g. Clostridium acetobutylicum. The main drawback, restricting the commercialization potential of this process, is the toxicity of butanol for the cell culture resulting in low concentrations of this compound in the broth. To make this process economically viable, an efficient recovery process has to be developed. In this work, a hydrophobic MFI type zeolite with high silica to alumina ratio was evaluated as adsorbent for the recovery of butanol and butyric acid from model solutions. Dual component adsorption experiments revealed that both butanol and butyric acid showed a high affinity for the hydrophobic MFI zeolite when adsorbed from aqueous model solutions. Multicomponent adsorption experiments using model solutions, mimicking real fermentation broths, revealed that the adsorbent was very selective to the target compounds. Further, the adsorption of butyric and acetic acid was found to be pH dependent with high adsorption below, and low adsorption above, the respective pKa values of the acids. Thermal desorption of butanol from MFI type zeolite was also studied and a suitable desorption temperature was identified.
  •  
3.
  • Hedlund, Jonas, et al. (författare)
  • Mass transport in porous media from first principles : an experimental and theoretical study
  • 2012
  • Ingår i: Journal of Membrane Science. - : Elsevier BV. - 0376-7388 .- 1873-3123. ; 415-416, s. 271-277
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present work, the mass transport of helium through zeolite is experimentally determined by measuring the flow of helium through a zeolite membrane. By using a mathematical model, the mass transport through defects was accounted for to arrive at mass transport through zeolite pores. For the first time, we could thereby experimentally show that the mass transport of helium in zeolite pores is strongly controlled by the amount and location of hydrocarbons in the zeolite pores and varies several orders of magnitude. The mass transport of helium in ZSM-5 zeolite pores is first reduced gradually more than one order of magnitude when the loading of n-hexane is increased from 0 to 47% of saturation. As the loading of n-hexane is further increased to 54% of saturation, the mass transport of helium in the zeolite pores is further reduced abruptly by more than two orders of magnitude. This gradual decrease followed by an abrupt decrease of mass transport is caused by adsorption of n-hexane in the zeolite pores. In a similar yet different fashion, the mass transport of helium in the zeolite pores is reduced abruptly by almost two orders of magnitude when the loading of benzene is increased from 0 to 19% of saturation due to adsorption of benzene in the pore intersections. Effective medium approximation percolation models with parameters estimated using density functional theory employing the local density approximation, i.e. models with no adjustable parameters and the most sophisticated theory yet applied to this system, can adequately describe the experimental observations.
  •  
4.
  • Hedlund, Jonas, et al. (författare)
  • Permporometry analysis of zeolite membranes
  • 2009
  • Ingår i: Journal of Membrane Science. - : Elsevier BV. - 0376-7388 .- 1873-3123. ; 345:1-2, s. 276-287
  • Tidskriftsartikel (refereegranskat)abstract
    • In permporometry analysis of zeolite membranes, the permeance of a non-adsorbing gas, such as helium, is measured as a function of pressure of a strongly adsorbing compound, such as n-hexane in the case of silicalite-1 membranes. The adsorbing compound effectively blocks the transport of the non-adsorbing gas already at very low activity of the adsorbing compound. The plot of the permeance of the non-adsorbing gas as a function of relative pressure of the adsorbing compound is denoted a permporometry pattern. The present work is based on experimental data for a number of thin MFI membranes with a film thickness ranging from 300 to 1800 nm. An adsorption-branch permporometry experiment is simple and straightforward and after activation of the membrane by removing adsorbed species at 300 °C in a flow of dry gas, a full permporometry pattern is recorded within about 7 h for such membranes. It is shown how the distribution of flow-through defects can be estimated from the permporometry pattern using a simple model for permeation based on Knudsen diffusion. The estimated defect distribution is supported by SEM observations. In addition, the permeance of the non-adsorbing gas through defects measured in permporometry can be used to predict the permeance of molecules diffusing through defects in the membrane in mixture separation experiments and also indicate the separation factor. For instance, the helium permeance through defects in an MFI membrane measured by helium/n-hexane permporometry at room temperature can be used to estimate the permeance of 2,2-dimethylbutane (DMB) in a mixture separation experiment at a higher temperature with a feed containing both DMB and n-hexane by assuming Knudsen diffusion for both helium and DMB in the defects. Also, the separation factor αn-hexane/DMB in a mixture separation experiment at a certain temperature with an MFI membrane with a given defect distribution can be estimated from n-hexane/helium permporometry data recorded at the same temperature through an empirical correlation. In summary, adsorption-branch permporometry is a very effective tool for analysis of thin zeolite membranes, that in short time gives data that can be used to estimate the distribution of flow-through defects in the membrane and to estimate the transport of large molecules through defects in separation experiments and also estimate separation performance.
  •  
5.
  • Karimi, Somayeh, et al. (författare)
  • A simple method for blocking defects in zeolite membranes
  • 2015
  • Ingår i: Journal of Membrane Science. - : Elsevier BV. - 0376-7388 .- 1873-3123. ; 489, s. 270-274
  • Tidskriftsartikel (refereegranskat)abstract
    • The abatement of defects in zeolite membranes is essential for achieving high selectivity. In the present work, a simple and effective method for blocking defects in ultra-thin (ca. 0.5 μm) MFI zeolite membranes has been developed. The method is based on deposition of an ultra-thin (∼15 nm) layer of amorphous silica on the top surface of the membrane. Permporometry data indicated that the amount of defects, especially defects larger than 4 nm, in the membranes was significantly reduced after the modification. In mixture separation experiments, the CO2/H2 separation factor increased dramatically after blocking the defects in a defective membrane that was selected for the experiments. For instance, at 263 K and 9 bar feed pressure, the CO2/H2 separation factor increased from 8.5 to 36 after modification of the membrane, whereas the CO2 flux only decreased by ca. 40%.
  •  
6.
  • Karimi, Somayeh, et al. (författare)
  • Functionalization of silica membranes for CO2 separation
  • 2020
  • Ingår i: Separation and Purification Technology. - : Elsevier. - 1383-5866 .- 1873-3794. ; 235
  • Tidskriftsartikel (refereegranskat)abstract
    • Five organic CO2-philic functional groups were incorporated in silica matrixes for preparation of functionalized silica membranes to explore the CO2 separation performance. Chemical groups including acetate, trifluoromethyl, methacrylate, urea and vinyl groups were anchored in the silica network using the co-condensation method.The information from 29Si solid-state NMR and FTIR analyses indicates the successful formation of a covalent bond between functional groups and the silica network. The thickness of the functionalized silica layers was measured by SEM and the thermal stability of the organic groups was determined by thermogravimetric analysis (TGA).The gas permeance and mixed gas selectivity of CO2/N2 was measured in the temperature range of 253–373 K with a feed pressure of 9 bar. A maximum selectivity of as high as 10 was observed for a trifluoromethyl functionalized silica membrane with a CO2 permeance of 5.5 × 10−7 mol s−1 m−2 Pa−1. Permporometry measurements indicated that the contribution of flow through micropores to the total flow for all the functionalized silica membranes varied between 62 and 82%. All membranes were CO2 selective. 
  •  
7.
  • Karimi, Somayeh, et al. (författare)
  • High flux acetate functionalized silica membranes based on in-situ co-condensation for CO2/N2 separation
  • 2016
  • Ingår i: Journal of Membrane Science. - : Elsevier BV. - 0376-7388 .- 1873-3123. ; 520, s. 574-582
  • Tidskriftsartikel (refereegranskat)abstract
    • Acetate-functionalized silica membranes were prepared via co-condensation. The molar ratio of functional groups in the silica matrix was varied in the range of 0–0.6, denoted by x. The presence of functional groups bonded to the silica network was revealed by FTIR and 29Si and 13C solid-state NMR analysis. The stability of the groups was studied by TG analysis. The membranes were evaluated for CO2/N2 mixture separation in a temperature range of 253–373 K using a feed pressure of 9 bar and a sweep gas kept at atmospheric pressure on the permeate side. The membranes were found to be CO2-selective at all the conditions studied. The highest observed selectivity was 16 for x=0.4, with a CO2 permeance of 5.12×10−7 mol s−1 m−2 Pa−1. For x=0.2, a permeance of as high as 20.74×10−7 mol s−1 m−2 Pa−1 with a CO2/N2 selectivity of 7.5 was obtained. This permeance is the highest reported for CO2/N2 separation using functionalized silica membranes. It is proposed that the separation mechanism between CO2 and N2 was the preferential adsorption of CO2, which inhibited adsorption and permeation of N2 through the silica pore network. Permporometry results revealed that as the loading of functional groups increased, the He permeance decreased. It was also indicated that the quantity of micropores in the functionalized membrane was higher than that in the parent silica membrane.
  •  
8.
  • Korelskiy, Danil, et al. (författare)
  • A study of CO2/CO separation by sub-micron b-oriented MFI membranes
  • 2016
  • Ingår i: RSC Advances. - 2046-2069. ; 6:70, s. 65475-65482
  • Tidskriftsartikel (refereegranskat)abstract
    • Separation of CO2 and CO is of great importance for many industrial applications. Today, CO2 is removed from CO mainly by adsorption or physical or chemical absorption systems that are energy-intensive and expensive. Membranes are listed among the most promising sustainable and energy-efficient alternatives for CO2 separation. Here, we study CO2/CO separation by novel sub-micron b-oriented MFI zeolite membranes in a temperature range of 258-303 K and at a feed pressure of 9 bar. Under all experimental conditions studied, the membranes were CO2-selective and displayed high CO2 permeance ranging from 17 000 to 23 000 gpu. With decreasing temperature, the CO2/CO selectivity was increasing, reaching a maximum of 26 at 258 K. We also developed a mathematical model to describe the membrane process, and it indicated that the membrane separation performance was a result of selective adsorption of CO2 on the polar zeolite. The heat of adsorption of CO2 on the zeolite is more negative due to the high quadrupole moment and polarisability of the molecule as compared to CO. At the same time, diffusional coupling (correlation effects) at high adsorbed loadings was found to favour the overall CO2/CO selectivity of the membranes by reducing the diffusivity of the lighter CO molecule in the ca. 0.55 nm pores in the zeolite. The model also indicated that the separation performance was limited by the mass transfer resistance in the support and concentration polarisation on the feed side of the membrane.
  •  
9.
  •  
10.
  • Korelskiy, Danil, et al. (författare)
  • An experimental study of micropore defects in MFI membranes
  • 2014
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 186, s. 194-200
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present work, two ultra-thin MFI membranes, prepared using hydroxide and fluoride ions as mineralizing agents, respectively, were carefully examined by permporometry. The amount of micropore defects, as determined by permporometry, differed significantly between the two different membranes. For the first time, it was demonstrated that the micropore defects determined by permporometry were most likely open grain boundaries. The results were verified by direct observation of the open grain boundaries by a state-of-the-art XHR-scanning electron microscopy instrument. In addition, the permporometry data were also consistent with permeation data using 1,3,5-trimethylbenzene (TMB) as a probe molecule, separation data using an equimolar mixture of n-hexane and TMB, and nitrogen adsorption data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy