SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Korhonen Rami K.) "

Sökning: WFRF:(Korhonen Rami K.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ebrahimi, Mohammadhossein, et al. (författare)
  • Associations of human femoral condyle cartilage structure and composition with viscoelastic and constituent-specific material properties at different stages of osteoarthritis
  • 2022
  • Ingår i: Journal of Biomechanics. - : Elsevier BV. - 0021-9290. ; 145
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationships between structure and function in human knee femoral cartilage are not well-known at different stages of osteoarthritis. Thus, our aim was to characterize the depth-dependent composition and structure (proteoglycan content, collagen network organization and collagen content) of normal and osteoarthritic human femoral condyle cartilage (n = 47) and relate them to their viscoelastic and constituent-specific mechanical properties that are obtained through dynamic sinusoidal testing and fibril-reinforced poroelastic material modeling of stress-relaxation testing, respectively. We characterized the proteoglycan content using digital densitometry, collagen network organization (orientation angle and anisotropy) using polarized light microscopy and collagen content using Fourier transform infrared spectroscopy. In the superficial cartilage (0–10 % of thickness), the collagen network disorganization and proteoglycan loss were associated with the smaller initial fibril network modulus - a parameter representing the pretension of the collagen network. Furthermore, the proteoglycan loss was associated with the greater strain-dependent fibril network modulus - a measure of nonlinear mechanical behavior. The proteoglycan loss was also associated with greater cartilage viscosity at a low loading frequency (0.005 Hz), while the collagen network disorganization was associated with greater cartilage viscosity at a high loading frequency (1 Hz). Our results suggest that proteoglycan loss and collagen network disorganization reduce the pretension of the collagen network while proteoglycan degradation also increases the nonlinear mechanical behavior of the collagen network. Further, the results also highlight that proteoglycan loss and collagen disorganization increase the viscosity of femoral cartilage, but their contribution to increased viscosity occurs in completely different loading frequencies.
  •  
3.
  • Ebrahimi, Mohammadhossein, et al. (författare)
  • Elastic, Dynamic Viscoelastic and Model-Derived Fibril-Reinforced Poroelastic Mechanical Properties of Normal and Osteoarthritic Human Femoral Condyle Cartilage
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 0090-6964 .- 1573-9686. ; 49:9, s. 2622-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) degrades articular cartilage and weakens its function. Modern fibril-reinforced poroelastic (FRPE) computational models can distinguish the mechanical properties of main cartilage constituents, namely collagen, proteoglycans, and fluid, thus, they can precisely characterize the complex mechanical behavior of the tissue. However, these properties are not known for human femoral condyle cartilage. Therefore, we aimed to characterize them from human subjects undergoing knee replacement and from deceased donors without known OA. Multi-step stress-relaxation measurements coupled with sample-specific finite element analyses were conducted to obtain the FRPE material properties. Samples were graded using OARSI scoring to determine the severity of histopathological cartilage degradation. The results suggest that alterations in the FRPE properties are not evident in the moderate stages of cartilage degradation (OARSI 2-3) as compared with normal tissue (OARSI 0-1). Drastic deterioration of the FRPE properties was observed in severely degraded cartilage (OARSI 4). We also found that the FRPE properties of femoral condyle cartilage related to the collagen network (initial fibril-network modulus) and proteoglycan matrix (non-fibrillar matrix modulus) were greater compared to tibial and patellar cartilage in OA. These findings may inform cartilage tissue-engineering efforts and help to improve the accuracy of cartilage representations in computational knee joint models.
  •  
4.
  • Huttu, Mari, et al. (författare)
  • Effects of medium and temperature on cellular responses in the superficial zone of hypo-osmotically challenged articular cartilage.
  • 2012
  • Ingår i: Journal of Functional Biomaterials. - Basel, Switzerland : MDPI AG. - 2079-4983. ; 3:3, s. 544-555
  • Tidskriftsartikel (refereegranskat)abstract
    • Osmotic loading of articular cartilage has been used to study cell-tissue interactions and mechanisms in chondrocyte volume regulation in situ. Since cell volume changes are likely to affect cell's mechanotransduction, it is important to understand how environmental factors, such as composition of the immersion medium and temperature affect cell volume changes in situ in osmotically challenged articular cartilage. In this study, chondrocytes were imaged in situ with a confocal laser scanning microscope (CLSM) through cartilage surface before and 3 min and 120 min after a hypo-osmotic challenge. Samples were measured either in phosphate buffered saline (PBS, without glucose and Ca(2+)) or in Dulbecco's modified Eagle's medium (DMEM, with glucose and Ca(2+)), and at 21 °C or at 37 °C. In all groups, cell volumes increased shortly after the hypotonic challenge and then recovered back to the original volumes. At both observation time points, cell volume changes as a result of the osmotic challenge were similar in PBS and DMEM in both temperatures. Our results indicate that the initial chondrocyte swelling and volume recovery as a result of the hypo-osmotic challenge of cartilage are not dependent on commonly used immersion media or temperature.
  •  
5.
  • Jahangir, Sana, et al. (författare)
  • Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties
  • 2023
  • Ingår i: Journal of Biomechanics. - 0021-9290. ; 160
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibril-reinforced poroviscoelastic material models are considered state-of-the-art in modeling articular cartilage biomechanics. Yet, cartilage material parameters are often based on bovine tissue properties in computational knee joint models, although bovine properties are distinctly different from those of humans. Thus, we aimed to investigate how cartilage mechanical responses are affected in the knee joint model during walking when fibril-reinforced poroviscoelastic properties of cartilage are based on human data instead of bovine. We constructed a finite element knee joint model in which tibial and femoral cartilages were modeled as fibril-reinforced poroviscoelastic material using either human or bovine data. Joint loading was based on subject-specific gait data. The resulting mechanical responses of knee cartilage were compared between the knee joint models with human or bovine fibril-reinforced poroviscoelastic cartilage properties. Furthermore, we conducted a sensitivity analysis to determine which fibril-reinforced poroviscoelastic material parameters have the greatest impact on cartilage mechanical responses in the knee joint during walking. In general, bovine cartilage properties yielded greater maximum principal stresses and fluid pressures (both up to 30%) when compared to the human cartilage properties during the loading response in both femoral and tibial cartilage sites. Cartilage mechanical responses were very sensitive to the collagen fibril-related material parameter variations during walking while they were unresponsive to proteoglycan matrix or fluid flow-related material parameter variations. Taken together, human cartilage material properties should be accounted for when the goal is to compare absolute mechanical responses of knee joint cartilage as bovine material parameters lead to substantially different cartilage mechanical responses.
  •  
6.
  • Julkunen, Petro, et al. (författare)
  • A Review of the Combination of Experimental Measurements and Fibril-Reinforced Modeling for Investigation of Articular Cartilage and Chondrocyte Response to Loading
  • 2013
  • Ingår i: Computational & Mathematical Methods in Medicine. - : Hindawi Limited. - 1748-6718 .- 1748-670X.
  • Forskningsöversikt (refereegranskat)abstract
    • The function of articular cartilage depends on its structure and composition, sensitively impaired in disease (e. g. osteoarthritis, OA). Responses of chondrocytes to tissue loading are modulated by the structure. Altered cell responses as an effect of OA may regulate cartilage mechanotransduction and cell biosynthesis. To be able to evaluate cell responses and factors affecting the onset and progression of OA, local tissue and cell stresses and strains in cartilage need to be characterized. This is extremely challenging with the presently available experimental techniques and therefore computational modeling is required. Modern models of articular cartilage are inhomogeneous and anisotropic, and they include many aspects of the real tissue structure and composition. In this paper, we provide an overview of the computational applications that have been developed for modeling the mechanics of articular cartilage at the tissue and cellular level. We concentrate on the use of fibril-reinforced models of cartilage. Furthermore, we introduce practical considerations for modeling applications, including also experimental tests that can be combined with the modeling approach. At the end, we discuss the prospects for patient-specific models when aiming to use finite element modeling analysis and evaluation of articular cartilage function, cellular responses, failure points, OA progression, and rehabilitation.
  •  
7.
  • Korhonen, Rami K., et al. (författare)
  • Multiscale In Silico Modeling of Cartilage Injuries
  • 2023
  • Ingår i: Advances in Experimental Medicine and Biology. - 0065-2598 .- 2214-8019. ; 1402, s. 45-56
  • Bokkapitel (refereegranskat)abstract
    • Injurious loading of the joint can be accompanied by articular cartilage damage and trigger inflammation. However, it is not well-known which mechanism controls further cartilage degradation, ultimately leading to post-traumatic osteoarthritis. For personalized prognostics, there should also be a method that can predict tissue alterations following joint and cartilage injury. This chapter gives an overview of experimental and computational methods to characterize and predict cartilage degradation following joint injury. Two mechanisms for cartilage degradation are proposed. In (1) biomechanically driven cartilage degradation, it is assumed that excessive levels of strain or stress of the fibrillar or non-fibrillar matrix lead to proteoglycan loss or collagen damage and degradation. In (2) biochemically driven cartilage degradation, it is assumed that diffusion of inflammatory cytokines leads to degradation of the extracellular matrix. When implementing these two mechanisms in a computational in silico modeling workflow, supplemented by in vitro and in vivo experiments, it is shown that biomechanically driven cartilage degradation is concentrated on the damage environment, while inflammation via synovial fluid affects all free cartilage surfaces. It is also proposed how the presented in silico modeling methodology may be used in the future for personalized prognostics and treatment planning of patients with a joint injury.
  •  
8.
  • Kosonen, Joonas P., et al. (författare)
  • Injury-related cell death and proteoglycan loss in articular cartilage : Numerical model combining necrosis, reactive oxygen species, and inflammatory cytokines
  • 2023
  • Ingår i: PLoS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) is a common musculoskeletal disease that leads to deterioration of articular cartilage, joint pain, and decreased quality of life. When OA develops after a joint injury, it is designated as post-traumatic OA (PTOA). The etiology of PTOA remains poorly understood, but it is known that proteoglycan (PG) loss, cell dysfunction, and cell death in cartilage are among the first signs of the disease. These processes, influenced by biomechanical and inflammatory stimuli, disturb the normal cell-regulated balance between tissue synthesis and degeneration. Previous computational mechanobiological models have not explicitly incorporated the cell-mediated degradation mechanisms triggered by an injury that eventually can lead to tissue-level compositional changes. Here, we developed a 2-D mechanobiological finite element model to predict necrosis, apoptosis following excessive production of reactive oxygen species (ROS), and inflammatory cytokine (interleukin-1)-driven apoptosis in cartilage explant. The resulting PG loss over 30 days was simulated. Biomechanically triggered PG degeneration, associated with cell necrosis, excessive ROS production, and cell apoptosis, was predicted to be localized near a lesion, while interleukin-1 diffusion-driven PG degeneration was manifested more globally. Interestingly, the model also showed proteolytic activity and PG biosynthesis closer to the levels of healthy tissue when pro-inflammatory cytokines were rapidly inhibited or cleared from the culture medium, leading to partial recovery of PG content. The numerical predictions of cell death and PG loss were supported by previous experimental findings. Furthermore, the simulated ROS and inflammation mechanisms had longer-lasting effects (over 3 days) on the PG content than localized necrosis. The mechanobiological model presented here may serve as a numerical tool for assessing early cartilage degeneration mechanisms and the efficacy of interventions to mitigate PTOA progression.
  •  
9.
  • Mononen, Mika E, et al. (författare)
  • A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data from the Osteoarthritis Initiative.
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group's joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R(2) = 0.95, p < 0.05; experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0-2 years, p < 0.001) was followed by a slow or negligible degeneration (2-4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.
  •  
10.
  • Mononen, Mika E., et al. (författare)
  • New algorithm for simulation of proteoglycan loss and collagen degeneration in the knee joint : Data from the osteoarthritis initiative
  • 2018
  • Ingår i: Journal of Orthopaedic Research. - : Wiley. - 0736-0266. ; 36:6, s. 1673-1683
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis is a harmful joint disease but prediction of disease progression is problematic. Currently, there is only one modeling framework which can be applied to predict the progression of knee osteoarthritis but it only considers degenerative changes in the collagen fibril network. Here, we have developed the framework further by considering all of the major tissue changes (proteoglycan content, fluid flow, and collagen fibril network) occurring in osteoarthritis. While excessive levels of tissue stresses controlled degeneration of the collagen fibril network, excessive levels of tissue strains controlled the decrease in proteoglycan content and the increase in permeability. We created four knee joint models with increasing degrees of complexity based on the depth-wise composition. Models were tested for normal and abnormal, physiologically relevant, loading conditions in the knee. Finally, the predicted depth-wise compositional changes from each model were compared against experimentally observed compositional changes in vitro. The model incorporating the typical depth-wise composition of cartilage produced the best match with experimental observations. Consistent with earlier in vitro experiments, this model simulated the greatest proteoglycan depletion in the superficial and middle zones, while the collagen fibril degeneration was located mostly in the superficial zone. The presented algorithm can be used for predicting simultaneous collagen degeneration and proteoglycan loss during the development of knee osteoarthritis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy