SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Korneliussen Thorfinn) "

Sökning: WFRF:(Korneliussen Thorfinn)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allentoft, Morten E., et al. (författare)
  • 100 ancient genomes show repeated population turnovers in Neolithic Denmark
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625, s. 329-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1–4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5–7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.
  •  
2.
  • Allentoft, Morten E., et al. (författare)
  • Population genomics of post-glacial western Eurasia
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 301-311
  • Tidskriftsartikel (refereegranskat)abstract
    • Western Eurasia witnessed several large-scale human migrations during the Holocene1–5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes—mainly from the Mesolithic and Neolithic periods—from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a ‘great divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 bp, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 bp, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
  •  
3.
  • Barrie, William, et al. (författare)
  • Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations
  • 2024
  • Ingår i: NATURE. - 0028-0836 .- 1476-4687. ; 625:7994
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment. Analysis of a large ancient genome dataset shows that genetic risk for multiple sclerosis rose in steppe pastoralists, providing insight into how genetic ancestry from the Neolithic and Bronze Age has shaped modern immune responses.
  •  
4.
  • da Fonseca, Rute R., et al. (författare)
  • The origin and evolution of maize in the Southwestern United States
  • 2015
  • Ingår i: Nature Plants. - 2055-026X. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of maize (Zea mays mays) in the US Southwest remains contentious, with conflicting archaeological data supporting either coastal(1-4) or highland(5,6) routes of diffusion of maize into the United States. Furthermore, the genetics of adaptation to the new environmental and cultural context of the Southwest is largely uncharacterized(7). To address these issues, we compared nuclear DNA from 32 archaeological maize samples spanning 6,000 years of evolution to modern landraces. We found that the initial diffusion of maize into the Southwest about 4,000 years ago is likely to have occurred along a highland route, followed by gene flow from a lowland coastal maize beginning at least 2,000 years ago. Our population genetic analysis also enabled us to differentiate selection during domestication for adaptation to the climatic and cultural environment of the Southwest, identifying adaptation loci relevant to drought tolerance and sugar content.
  •  
5.
  •  
6.
  • Foote, Andrew D., et al. (författare)
  • Genome-culture coevolution promotes rapid divergence of killer whale ecotypes
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.
  •  
7.
  • Irving-Pease, Evan K., et al. (författare)
  • The selection landscape and genetic legacy of ancient Eurasians
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625, s. 312-320
  • Tidskriftsartikel (refereegranskat)abstract
    • The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes 1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer’s disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.
  •  
8.
  • Karmin, Monika, et al. (författare)
  • A recent bottleneck of Y chromosome diversity coincides with a global change in culture.
  • 2015
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 25:4
  • Tidskriftsartikel (refereegranskat)abstract
    • It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
  •  
9.
  • Kjær, Kurt H., et al. (författare)
  • A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA
  • 2022
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 612:7939, s. 283-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11–19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.
  •  
10.
  • Liu, Shiping, et al. (författare)
  • Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar Bears
  • 2014
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 157:4, s. 785-794
  • Tidskriftsartikel (refereegranskat)abstract
    • Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (17)
annan publikation (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Willerslev, Eske (16)
Nielsen, Rasmus (13)
Korneliussen, Thorfi ... (9)
Orlando, Ludovic (9)
Allentoft, Morten E. (8)
Durbin, Richard (7)
visa fler...
Sikora, Martin (6)
Stenderup, Jesper (6)
McColl, Hugh (6)
Vinner, Lasse (6)
Rasmussen, Simon (6)
Gilbert, M. Thomas P ... (6)
Kristiansen, Kristia ... (5)
Lawson, Daniel J. (5)
Kjær, Kurt H. (5)
Racimo, Fernando (5)
Rasmussen, Morten (4)
Lynnerup, Niels (4)
Ingason, Andrés (4)
Refoyo-Martínez, Alb ... (4)
Barrie, William (4)
Pearson, Alice (4)
Demeter, Fabrice (4)
Werge, Thomas (4)
Scorrano, Gabriele (4)
Cappellini, Enrico (4)
Jakobsson, Mattias (4)
Raghavan, Maanasa (4)
Metspalu, Mait (4)
Eriksson, Anders (3)
Rosengren, Anders (3)
Sjögren, Karl-Göran, ... (3)
Fischer, Anders, 195 ... (3)
Macleod, Ruairidh (3)
Henriksen, Rasmus A. (3)
Vimala, Tharsika (3)
Renaud, Gabriel (3)
Stern, Aaron (3)
Klassen, Lutz (3)
Meldgaard, Morten (3)
Sicheritz-Ponten, Th ... (3)
Alsos, Inger Greve (3)
Rouillard, Alexandra (3)
Coissac, Éric (3)
Avila-Arcos, Maria C ... (3)
Villems, Richard (3)
Seguin-Orlando, Anda ... (3)
Skoglund, Pontus (3)
Dockter, Christoph (3)
Skadhauge, Birgitte (3)
visa färre...
Lärosäte
Uppsala universitet (11)
Göteborgs universitet (5)
Lunds universitet (5)
Stockholms universitet (1)
Naturhistoriska riksmuseet (1)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Humaniora (6)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy