SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kornijow R) "

Sökning: WFRF:(Kornijow R)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Eyto, E, et al. (författare)
  • The distribution of chydorids (Branchiopoda, Anomopoda) in European shallow lakes and its application to ecological quality monitoring
  • 2003
  • Ingår i: Archiv für Hydrobiologie. - : Schweizerbart. - 0003-9136. ; 156:2, s. 181-202
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes the chydorid (Branchiopoda, Anomopoda) assemblages from 66 European shallow lakes, and presents data relating the assemblages to lake type and ecological quality. Forty species, out of a total recorded European fauna of 60 species, were found in the study sites. No significant differences were found between chydorid assemblages associated with rock and plant substrata. Patterns of distribution were best explained primarily by latitude and pH. Chlorophyll-a, total phosphorus, water temperature and Secchi depth were also correlated with assemblage descriptors. Alonopsis elongata, Alona rectangula, Alonella excisa and Pleuroxus uncinatus were shown to have higher prevalence in certain lake types. The dominance of Chydorus sphaericus in a third of the study sites was linked to eutrophication and high levels of chlorophyll-a. The relationship between chydorids and lake ecological quality was more apparent at species rather than community level. This study identifies important typological factors affecting chydorid distribution, and confirms that patterns of chydorid distribution previously reported from regional studies hold true across Europe.
  •  
2.
  •  
3.
  • Gyllström, Mikael, et al. (författare)
  • The role of climate in shaping zooplankton communities of shallow lakes
  • 2005
  • Ingår i: Limnology and Oceanography. - 1939-5590. ; 50:6, s. 2008-2021
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed data from 81 shallow European lakes, which were sampled with standardized methods, for combined effects of climatic, physical, and chemical features of food-web interactions, with a specific focus on zooplankton biomass and community structure. Multiple-regression analysis showed that total phosphorus (TP) generally was the most important predictor of zooplankton biomass and community structure. Climate was the next most important predictor and acted mainly through its effect on pelagic zooplankton taxa. Benthic and plant-associated taxa (typically almost half the total zooplankton biomass) were, however, affected mainly by macrophyte coverage. Neither climate nor TP affected the relation between small and large taxa, and we found only a weak trend with increasing TP of increasing mean crustacean body mass. Dividing the data set into three climate zones revealed a pronounced difference in response to lake productivity between cold lakes, with long periods of ice cover, and the two warmer lake types. These ‘‘ice’’ lakes differed from the others with respect to the effect of TP on chlorophyll a, the zooplankton : chlorophyll a ratio, the chlorophyll a :TP ratio, and the proportion of cyclopoids in the copepod community. Our data suggest that bottom-up forces, such as nutrient concentration, are the most important predictors of zooplankton biomass. In addition, climate contributes significantly—possibly by affecting top-down regulation by fish—and may interact with productivity in determining the zooplankton standing biomass and community composition. Hence, the present study suggests that food-web dynamics are closely linked to climatic features.
  •  
4.
  • Moss, B, et al. (författare)
  • The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive
  • 2003
  • Ingår i: Aquatic Conservation: Marine and Freshwater Ecosystems. - : Wiley. - 1052-7613. ; 13:6, s. 507-549
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. The European Water Framework Directive requires the determination of ecological status in European fresh and saline waters. This is to be through the establishment of a typology of surface water bodies, the determination of reference (high status) conditions in each element (ecotype) of the typology and of lower grades of status (good, moderate, poor and bad) for each ecotype. It then requires classification of the status of the water bodies and their restoration to at least 'good status' in a specified period. 2. Though there are many methods for assessing water quality, none has the scope of that defined in the Directive. The provisions of the Directive require a wide range of variables to be measured and give only general guidance as to how systems of classification should be established. This raises issues of comparability across States and of the costs of making the determinations. 3. Using expert workshops and subsequent field testing, a practicable pan-European typology and classification system has been developed for shallow lakes, which can easily be extended to all lakes. It is parsimonious in its choice of determinands, but based on current limnological understanding and therefore as cost-effective as possible. 4. A core typology is described, which can be expanded easily in particular States to meet local conditions. The core includes 48 ecotypes across the entire European climate gradient and incorporates climate, lake area, geology of the catchment and conductivity. 5. The classification system is founded on a liberal interpretation of Annexes in the Directive and uses variables that are inexpensive to measure and ecologically relevant. The need for taxonomic expertise is minimized. 6. The scheme has been through eight iterations, two of which were tested in the field on tranches of 66 lakes. The final version, Version 8, is offered for operational testing and further refinement by statutory authorities.
  •  
5.
  • Noges, P, et al. (författare)
  • Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe
  • 2003
  • Ingår i: Hydrobiologia. - 1573-5117 .- 0018-8158. ; 506:1-3, s. 51-58
  • Konferensbidrag (refereegranskat)abstract
    • In order to disentangle the causes of variations in water chemistry among European shallow lakes, we performed standardised sampling programs in 86 lakes along a latitudinal gradient from southern Spain to northern Sweden. Lakes with an area of 0.1 to 27000 ha and mean depth of 0.4-5.6 m located in low to high altitudes were investigated within the EC project ECOFRAME 1-4 times during June-October 2000-2001. Several variables like conductivity, alkalinity, abundance of submerged plants, concentrations of suspended solids, total nitrogen and phosphorus were latitude-dependent decreasing from south to north. Secchi depth, concentrations of total nitrogen, total phosphorus, suspended solids, and chlorophyll a correlated strongly with the presumed quality classes of the lakes. We came to the conclusion that the variability of shallow lakes in Europe is still mostly dependent on natural differences. Variables connected to lake morphometry, seasonality, basin geology and climate explained altogether nearly half of the total variability of lakes. The trophic state factor, describing mostly the human influence on lakes, was the strongest single factor responsible for nearly a quarter of the total variability of the studied European lakes.
  •  
6.
  • Peeters, E, et al. (författare)
  • Assessing ecological quality of shallow lakes: Does knowledge of transparency suffice?
  • 2009
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1618-0089 .- 1439-1791. ; 10, s. 89-96
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Water Framework Directive (WFD) requires that all aquatic ecosystems in their member states should reach ‘good’ ecological quality by 2015. To assess ecological quality, the WFD requires the definition of reference conditions using biological, physical and chemical indicators and the assignment of each water body to one of five quality classes using these indicators. Elaborate assessment schemes using large sets of variables are now being developed. Here we address the question whether all this is really needed and what the simplest assessment approach would be for the case of shallow lakes. We explore the relationships between the quality class assigned to a lake by experts in shallow lake ecology and a rich set of biological, physical, and chemical data. Multinomial logistic regression analyses were carried out based on data from 86 shallow lakes throughout Europe that were sampled in 2000 and/or 2001. Ecological quality of shallow lakes judged by experts was strongly correlated to physical and chemical variables associated with light regime and nutrients and much less to biological variables. Our regression model showed that ecological quality of this set of shallow lakes judged by experts could be predicted quite well from water transparency expressed as Secchi depth and that other variables did not contribute to it significantly. According to the WFD, lakes should at least have a ‘good’ ecological quality. Quality judged by experts and predicted quality were similar for 78% of the lakes with respect to meeting this standard. As a cautionary note we stress that Secchi depth alone will be a less useful indicator if effects of stressors other than eutrophication (e.g. lake acidification and toxic pollution) are to be considered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy