SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Korol Sergiy V) "

Search: WFRF:(Korol Sergiy V)

  • Result 1-10 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Durcik, Martina, et al. (author)
  • New Dual Inhibitors of Bacterial Topoisomerases with Broad-Spectrum Antibacterial Activity and In Vivo Efficacy against Vancomycin-Intermediate Staphylococcus aureus
  • 2023
  • In: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 66:6, s. 3968-3994
  • Journal article (peer-reviewed)abstract
    • A new series of dual low nanomolar benzothiazole inhibitors of bacterial DNA gyrase and topoisomerase IV were developed. The resulting compounds show excellent broad-spectrum antibacterial activities against Gram-positive Enterococcus faecalis, Enterococcus faecium and multidrug resistant (MDR) Staphylococcus aureus strains [best compound minimal inhibitory concentrations (MICs): range, <0.03125–0.25 μg/mL] and against the Gram-negatives Acinetobacter baumannii and Klebsiella pneumoniae (best compound MICs: range, 1–4 μg/mL). Lead compound 7a was identified with favorable solubility and plasma protein binding, good metabolic stability, selectivity for bacterial topoisomerases, and no toxicity issues. The crystal structure of 7a in complex with Pseudomonas aeruginosa GyrB24 revealed its binding mode at the ATP-binding site. Expanded profiling of 7a and 7h showed potent antibacterial activity against over 100 MDR and non-MDR strains of A. baumannii and several other Gram-positive and Gram-negative strains. Ultimately, in vivo efficacy of 7a in a mouse model of vancomycin-intermediate S. aureus thigh infection was also demonstrated.
  •  
2.
  • Babateen, Omar, et al. (author)
  • Etomidate, propofol and diazepam potentiate GABA-evoked GABAA currents in a cell line derived from Human glioblastoma
  • 2015
  • In: European Journal of Pharmacology. - : Elsevier BV. - 0014-2999 .- 1879-0712. ; 748, s. 101-107
  • Journal article (peer-reviewed)abstract
    • GABAA receptors are pentameric chloride ion channels that are opened by GABA. We have screened a cell line derived from human glioblastoma, U3047MG, for expression of GABAA receptor subunit isoforms and formation of functional ion channels. We identified GABAA receptors subunit α2, α3, α5, β1, β2, β3, δ, γ3, π, and θ mRNAs in the U3047MG cell line. Whole-cell GABA-activated currents were recorded and the half-maximal concentration (EC50) for the GABA-activated current was 36μM. The currents were activated by THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and enhanced by the benzodiazepine diazepam (1μM) and the general anesthetics etomidate and propofol (50μM). In line with the expressed GABAA receptors containing at least the α3β3θ subunits, the receptors were highly sensitive to etomidate (EC50=55nM). Immunocytochemistry identified expression of the α3 and β3 subunit proteins. Our results show that the GABAA receptors in the glial cell line are functional and are modulated by classical GABAA receptor drugs. We propose that the U3047MG cell line may be used as a model system to study GABAA receptors function and pharmacology in glial cells.
  •  
3.
  • Babateen, Omar, et al. (author)
  • Liraglutide modulates GABAergic signaling in rat hippocampal CA3 pyramidal neurons predominantly by presynaptic mechanism
  • 2017
  • In: BMC Pharmacology & Toxicology. - : Springer Science and Business Media LLC. - 2050-6511. ; 18
  • Journal article (peer-reviewed)abstract
    • Backgroundγ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain where it regulates activity of neuronal networks. The receptor for glucagon-like peptide-1 (GLP-1) is expressed in the hippocampus, which is the center for memory and learning. In this study we examined effects of liraglutide, a GLP-1 analog, on GABA signaling in CA3 hippocampal pyramidal neurons.MethodsWe used patch-clamp electrophysiology to record synaptic and tonic GABA-activated currents in CA3 pyramidal neurons in rat hippocampal brain slices.ResultsWe examined the effects of liraglutide on the neurons at concentrations ranging from one nM to one μM. Significant changes of the spontaneous inhibitory postsynaptic currents (sIPSCs) were only recorded with 100 nM liraglutide and then in just ≈50% of the neurons tested at this concentration. In neurons affected by liraglutide both the sIPSC frequency and the most probable amplitudes increased. When the action potential firing was inhibited by tetrodotoxin (TTX) the frequency and amplitude of IPSCs in TTX and in TTX plus 100 nM liraglutide were similar.ConclusionsThe results demonstrate that liraglutide regulation of GABA signaling of CA3 pyramidal neurons is predominantly presynaptic and more limited than has been observed for GLP-1 and exendin-4 in hippocampal neurons.
  •  
4.
  •  
5.
  • Bhandage, Amol, 1988-, et al. (author)
  • Expression of calcium release-activated and voltage-gated calcium channels genes in peripheral blood mononuclear cells is altered in pregnancy and in type 1 diabetes
  • 2018
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:12
  • Journal article (peer-reviewed)abstract
    • Calcium (Ca2+) is an important ion in physiology and is found both outside and inside cells. The intracellular concentration of Ca2+ is tightly regulated as it is an intracellular signal molecule and can affect a variety of cellular processes. In immune cells Ca2+ has been shown to regulate e.g. gene transcription, cytokine secretion, proliferation and migration. Ca2+ can enter the cytoplasm either from intracellular stores or from outside the cells when Ca2+ permeable ion channels in the plasma membrane open. The Ca2+ release-activated (CRAC) channel is the most prominent Ca2+ ion channel in the plasma membrane. It is formed by ORAI1-3 and the channel is opened by the endoplasmic reticulum Ca2+ sensor proteins stromal interaction molecules (STIM) 1 and 2. Another group of Ca-2(+) channels in the plasma membrane are the voltage-gated Ca2+ (Ca-V) channels. We examined if a change in immunological tolerance is accompanied by altered ORAI, STIM and Ca-V gene expression in peripheral blood mononuclear cells (PBMCs) in pregnant women and in type 1 diabetic individuals. Our results show that in pregnancy and type 1 diabetes ORAI1-3 are up-regulated whereas STIM1 and 2 are down-regulated in pregnancy but only STIM2 in type 1 diabetes. Expression of L-, P/Q-, R- and T-type voltage-gated Ca2+ channels was detected in the PBMCs where the Ca(V)2.3 gene was up-regulated in pregnancy and type 1 diabetes whereas the Ca(V)2.1 and Ca(V)3.2 genes were up-regulated only in pregnancy and the Ca(V)1.3 gene in type 1 diabetes. The results are consistent with that expression of ORAI, STIM and Ca-V genes correlate with a shift in immunological status of the individual in health, as during pregnancy, and in the autoimmune disease type 1 diabetes. Whether the changes are in general protective or in type 1 diabetes include some pathogenic components remains to be clarified.
  •  
6.
  • Bhandage, Amol K., 1988-, et al. (author)
  • AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women
  • 2017
  • In: Journal of Neuroimmunology. - : Elsevier BV. - 0165-5728 .- 1872-8421. ; 305, s. 51-58
  • Journal article (peer-reviewed)abstract
    • The amino acid glutamate opens cation permeable ion channels, the iGlu receptors. These ion channels are abundantly expressed in the mammalian brain where glutamate is the main excitatory neurotransmitter. The neurotransmitters and their receptors are being increasingly detected in the cells of immune system. Here we examined the expression of the 18 known subunits of the iGlu receptors families; alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-D-aspartate (NMDA) and delta in human peripheral blood mononuclear cells (PBMCs). We compared the expression of the subunits between four groups: men, non-pregnant women, healthy pregnant women and depressed pregnant women.Out of 18 subunits of the iGlu receptors, mRNAs for 11 subunits were detected in PBMCs from men and nonpregnant women; AMPA: GluA3, GluA4, kainate: GluK2, GluK4, GluK5, NMDA: GluN1, GluN2C, GluN2D, GluN3A, GluN3B, and delta: GluD1. In the healthy and the depressed pregnant women, in addition, the delta GluD2 subunit was identified. The mRNAs for GluK4, GluK5, GluN2C and GluN2D were expressed at a higher level than other subunits. Gender, pregnancy or depression during pregnancy altered the expression of GluA3, GluK4, GluN2D, GluN3B and GluD1 iGlu subunit mRNAs. The greatest changes recorded were the lower GluA3 and GluK4 mRNA levels in pregnant women and the higher GluN2D mRNA level in healthy but not in depressed pregnant women as compared to non-pregnant individuals. Using subunit specific antibodies, the GluK4, GluK5, GluNl, GluN2C and GluN2D subunit proteins were identified in the PBMCs. The results show expression of specific iGlu receptor subunit in the PBMCs and support the idea of physiology-driven changes of iGlu receptors subtypes in the immune cells.
  •  
7.
  • Bhandage, Amol K., 1988-, et al. (author)
  • GABA Regulates Release of Inflammatory Cytokines From Peripheral Blood Mononuclear Cells and CD4+ T Cells and Is Immunosuppressive in Type 1 Diabetes
  • 2018
  • In: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 30, s. 283-294
  • Journal article (peer-reviewed)abstract
    • The neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule in the brain and in pancreatic islets. Here, we demonstrate that GABA regulates cytokine secretion from human peripheral blood mononuclear cells (PBMCs) and CD4+ T cells. In anti-CD3 stimulated PBMCs, GABA (100nM) inhibited release of 47 cytokines in cells from patients with type 1 diabetes (T1D), but only 16 cytokines in cells from nondiabetic (ND) individuals. CD4+ T cells from ND individuals were grouped into responder or non-responder T cells according to effects of GABA (100nM, 500nM) on the cell proliferation. In the responder T cells, GABA decreased proliferation, and inhibited secretion of 37 cytokines in a concentration-dependent manner. In the non-responder T cells, GABA modulated release of 8 cytokines. GABA concentrations in plasma from T1D patients and ND individuals were correlated with 10 cytokines where 7 were increased in plasma of T1D patients. GABA inhibited secretion of 5 of these cytokines from both T1D PBMCs and ND responder T cells. The results identify GABA as a potent regulator of both Th1- and Th2-type cytokine secretion from human PBMCs and CD4+ T cells where GABA generally decreases the secretion.
  •  
8.
  • Cotman, Andrej Emanuel, et al. (author)
  • Discovery and Hit-to-Lead Optimization of Benzothiazole Scaffold- Based DNA Gyrase Inhibitors with Potent Activity against Acinetobacter baumannii and Pseudomonas aeruginosa
  • 2023
  • In: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 66:2, s. 1380-1425
  • Journal article (peer-reviewed)abstract
    • We have developed compounds with a promising activity against Acinetobacter baumannii and Pseudomonas aerugi-nosa, which are both on the WHO priority list of antibiotic -resistant bacteria. Starting from DNA gyrase inhibitor 1, we identified compound 27, featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from A. baumannii and P. aeruginosa, a 10-fold decreased inhibition of human topoisomerase II alpha, and no cross-resistance to novobiocin. Cocrystal structures of 1 in complex with Escherichia coli GyrB24 and (S)-27 in complex with A. baumannii GyrB23 and P. aeruginosa GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit. In further optimization steps, solubility, plasma free fraction, and other ADME properties of 27 were improved by fine-tuning of lipophilicity. In particular, analogs of 27 with retained anti-Gram-negative activity and improved plasma free fraction were identified. The series was found to be nongenotoxic, nonmutagenic, devoid of mitochondrial toxicity, and possessed no ion channel liabilities.
  •  
9.
  • Fellerhoff-Losch, Barbara, et al. (author)
  • Normal human CD4+ helper T cells express Kv1.1 voltage-gated K+ channels, and selective Kv1.1 block in T cells induces by itself robust TNFα production and secretion and activation of the NFκB non-canonical pathway
  • 2016
  • In: Journal of neural transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 123:3, s. 137-157
  • Journal article (peer-reviewed)abstract
    • TNFα is a very potent and pleiotropic pro-inflammatory cytokine, essential to the immune system for eradicating cancer and microorganisms, and to the nervous system, for brain development and ongoing function. Yet, excess and/or chronic TNFα secretion causes massive tissue damage in autoimmune, inflammatory and neurological diseases and injuries. Therefore, many patients with autoimmune/inflammatory diseases receive anti-TNFα medications. TNFα is secreted primarily by CD4+ T cells, macrophages, monocytes, neutrophils and NK cells, mainly after immune stimulation. Yet, the cause for the pathologically high and chronic TNFα secretion is unknown. Can blocking of a particular ion channel in T cells induce by itself TNFα secretion? Such phenomenon was never revealed or even hypothesized. In this interdisciplinary study we discovered that: (1) normal human T cells express Kv1.1 voltage-gated potassium channel mRNA, and the Kv1.1 membrane-anchored protein channel; (2) Kv1.1 is expressed in most CD4+CD3+ helper T cells (mean CD4+CD3+Kv1.1+ T cells of 7 healthy subjects: 53.09 ± 22.17 %), but not in CD8+CD3+ cytotoxic T cells (mean CD8+CD3+Kv1.1+ T cells: 4.12 ± 3.04 %); (3) electrophysiological whole-cell recordings in normal human T cells revealed Kv currents; (4) Dendrotoxin-K (DTX-K), a highly selective Kv1.1 blocker derived from snake toxin, increases the rate of rise and decay of Kv currents in both resting and activated T cells, without affecting the peak current; (5) DTX-K by itself induces robust TNFα production and secretion by normal human T cells, without elevating IFNγ, IL-4 and IL-10; (6) intact Ca2+ channels are required for DTX-induced TNFα secretion; (7) selective anti-Kv1.1 antibodies also induce by themselves TNFα secretion; (8) DTX-K activates NFκB in normal human T cells via the unique non-canonical-pathway; (9) injection of Kv1.1-blocked human T cells to SCID mice, causes recruitment of resident mouse cells into the liver, alike reported after TNFα injection into the brain. Based on our discoveries we speculate that abnormally blocked Kv1.1 in T cells (and other immune cells?), due to either anti-Kv1.1 autoimmune antibodies, or Kv1.1-blocking toxins alike DTX-K, or Kv1.1-blocking genetic mutations, may be responsible for the chronic/excessive TNFα in autoimmune/inflammatory diseases. Independently, we also hypothesize that selective block of Kv1.1 in CD4+ T cells of patients with cancer or chronic infectious diseases could be therapeutic, since it may: a. augment beneficial secretion and delivery of TNFα to the disease-affected sites; b. induce recruitment and extravasation of curative immune cells and factors; c. improve accessibility of drugs to the brain and few peripheral organs thanks to TNFα-induced increased permeability of organ’s barriers.
  •  
10.
  • Hammoud, Hayma, et al. (author)
  • Insulin differentially modulates GABA signalling in hippocampal neurons and, in an age-dependent manner, normalizes GABA-activated currents in the tg-APPSwe mouse model of Alzheimer's disease
  • 2021
  • In: Acta Physiologica. - : John Wiley & Sons. - 1748-1708 .- 1748-1716. ; 232:2
  • Journal article (peer-reviewed)abstract
    • AimWe examined if tonic γ‐aminobutyric acid (GABA)‐activated currents in primary hippocampal neurons were modulated by insulin in wild‐type and tg‐APPSwe mice, an Alzheimer’s disease (AD) model.MethodsGABA‐activated currents were recorded in dentate gyrus (DG) granule cells and CA3 pyramidal neurons in hippocampal brain slices, from 8‐10 weeks old (young) wild‐type mice and in dorsal DG granule cells in adult, 5‐6 and 10‐12 (aged) months old wild‐type and tg‐APPSwe mice, in the absence or presence of insulin, by whole‐cell patch‐clamp electrophysiology.ResultsIn young mice, insulin (1 nM) enhanced the total spontaneous inhibitory postsynaptic current (sIPSCT) density in both dorsal and ventral DG granule cells. The extrasynaptic current density was only increased by insulin in dorsal CA3 pyramidal neurons. In absence of action potentials, insulin enhanced DG granule cells and dorsal CA3 pyramidal neurons miniature IPSCT (mIPSCT) frequency, consistent with insulin regulation of presynaptic GABA release. sIPSCT densities in DG granule cells were similar in wild‐type and tg‐APPSwe mice at 5‐6 months but significantly decreased in aged tg‐APPSwe mice where insulin normalized currents to wild‐type levels. The extrasynaptic current density was increased in tg‐APPSwe mice relative to wild‐type littermates but, only in aged tg‐APPSwe mice did insulin decrease and normalize the current.ConclusionInsulin effects on GABA signalling in hippocampal neurons are selective while multifaceted and context‐based. Not only is the response to insulin related to cell‐type, hippocampal axis‐location, age of animals and disease but also to the subtype of neuronal inhibition involved, synaptic or extrasynaptic GABAA receptors‐activated currents.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 22
Type of publication
journal article (21)
research review (1)
Type of content
peer-reviewed (17)
other academic/artistic (5)
Author/Editor
Korol, Sergiy V (21)
Jin, Zhe (20)
Birnir, Bryndis (19)
Bhandage, Amol K., 1 ... (6)
Babateen, Omar (4)
Jin, Yang (3)
show more...
Carlsson, Per-Ola (3)
Espes, Daniel, 1985- (3)
Hughes, Diarmaid, 19 ... (2)
Westermark, Bengt (2)
Lawson, David M. (2)
Sundström Poromaa, I ... (2)
Dahl, Niklas (2)
Svensson, Richard (2)
Anderlid, Britt-Mari ... (2)
Smits, Anja (2)
Simoff, Ivailo (2)
Cao, Sha (2)
Hellgren, Charlotte, ... (2)
Uhrbom, Lene (2)
Babateen, Omar M. (2)
Tafreshiha, Atieh (2)
Huss, Mikael (1)
Li, Jin-Ping (1)
Kamali-Moghaddam, Ma ... (1)
Shen, Qiujin (1)
Deng, Qiaolin (1)
Hoeber, Jan (1)
Fatima, Ambrin (1)
Klar, Joakim, PhD, 1 ... (1)
Schuster, Jens, Assi ... (1)
Gallant, Caroline J. (1)
Gandasi, Nikhil R (1)
Barg, Sebastian, 196 ... (1)
Tengholm, Anders, 19 ... (1)
Barg, Sebastian (1)
Sullivan, Patrick F. (1)
Nordgren, Ann (1)
Lenhammar, Lena (1)
Uhlen, Per (1)
Falk, Anna (1)
Forsberg-Nilsson, Ka ... (1)
Rönnholm, Harriet (1)
Ahemaiti, Aikeremu (1)
Nilsson, Karin Forsb ... (1)
Huseby, Douglas L (1)
Garoff, Linnéa (1)
Berruga Fernández, T ... (1)
Bhandage, Amol, 1988 ... (1)
Gohel, Priya (1)
show less...
University
Uppsala University (22)
Karolinska Institutet (3)
Stockholm University (2)
RISE (2)
Language
English (22)
Research subject (UKÄ/SCB)
Medical and Health Sciences (21)
Natural sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view