SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Korovinskiy D.) "

Sökning: WFRF:(Korovinskiy D.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Divin, A., et al. (författare)
  • A new model for the electron pressure nongyrotropy in the outer electron diffusion region
  • 2016
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 43:20, s. 10565-10573
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new model to describe the electron pressure nongyrotropy inside the electron diffusion region (EDR) in an antiparallel magnetic reconnection scenario. A combination of particle-in-cell simulations and analytical estimates is used to identify such a component of the electron pressure tensor in the rotated coordinates, which is nearly invariant along the outflow direction between the X line and the electron remagnetization points in the outer EDR. It is shown that the EDR two-scale structure (inner and outer parts) is formed due to superposition of the nongyrotropic meandering electron population and gyrotropic electron population with large anisotropy parallel to the magnetic field upstream of the EDR. Inside the inner EDR the influence of the pressure anisotropy can largely be ignored. In the outer EDR, a thin electron layer with electron flow speed exceeding the E x B drift velocity is supported by large-momentum flux produced by the electron pressure anisotropy upstream of the EDR. We find that this fast electron exhaust flow with |V(e)xB|>|E| is in fact a constituent part of the EDR, a finding which will steer the interpretation of the Magnetospheric Multiscale Mission (MMS) data.
  •  
2.
  • Divin, A., et al. (författare)
  • Inner and outer electron diffusion region of antiparallel collisionless reconnection : Density dependence
  • 2019
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 26:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We study inflow density dependence of substructures within electron diffusion region (EDR) of collisionless symmetric magnetic reconnection. We perform a set of 2.5D particle-in-cell simulations which start from a Harris current layer with a uniform background density n(b). A scan of n(b) ranging from 0:02 n(0) to 2 n(0) of the peak current layer density (n(0)) is studied keeping other plasma parameters the same. Various quantities measuring reconnection rate, EDR spatial scales, and characteristic velocities are introduced. We analyze EDR properties during quasisteady stage when the EDR length measures saturate. Consistent with past kinetic simulations, electrons are heated parallel to the B field in the inflow region. The presence of the strong parallel anisotropy acts twofold: (1) electron pressure anisotropy drift gets important at the EDR upstream edge in addition to the E x B drift speed and (2) the pressure anisotropy term -del.P-(e)/(ne) modifies the force balance there. We find that the width of the EDR demagnetization region and EDR current are proportional to the electron inertial length similar to d(e) and similar to d(e)n(b)(0.22), respectively. Magnetic reconnection is fast with a rate of similar to 0.1 but depends weakly on density as similar to n(b)(-1/8). Such reconnection rate proxies as EDR geometrical aspect or the inflow-to-outflow electron velocity ratio are shown to have different density trends, making electric field the only reliable measure of the reconnection rate. Published under license by AIP Publishing.
  •  
3.
  • Divin, A., et al. (författare)
  • Scaling of the inner electron diffusion region in collisionless magnetic reconnection
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A06217-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sweet-Parker analysis of the inner electron diffusion region of collisionless magnetic reconnection is presented. The study includes charged particles motion near the X-line and an appropriate approximation of the off-diagonal term for the electron pressure tensor. The obtained scaling shows that the width of the inner electron diffusion region is equal to the electron inertial length, and that electrons are accelerated up to the electron Alfven velocity in X-line direction. The estimated effective plasma conductivity is based on the electron gyrofrequency rather than the binary collision frequency, and gives the extreme (minimal) value of the plasma conductivity similar to Bohm diffusion. The scaling properties are verified by means of Particle-in-Cell simulations. An ad hoc parameter needs to be introduced to the scaling relations in order to better match the theory and simulations.
  •  
4.
  • Korovinskiy, D. B., et al. (författare)
  • MHD modeling of the double-gradient (kink) magnetic instability
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-9380. ; 118:3, s. 1146-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents the detailed numerical investigation of the "double-gradient mode," which is believed to be responsible for the magnetotail flapping oscillations-the fast vertical (normal to the layer) oscillations of the Earth's magnetotail plasma sheet with a quasiperiod similar to 100-200 s. The instability is studied using the magnetotail near-equilibrium configuration. For the first time, linear three-dimensional numerical analysis is complemented with full 3-D MHD simulations. It is known that the "double-gradient mode" has unstable solutions in the region of the tailward growth of the magnetic field component, normal to the current sheet. The unstable kink branch of the mode is the focus of our study. Linear MHD code results agree with the theory, and the growth rate is found to be close to the peak value, provided by the analytical estimates. Full 3-D simulations are initialized with the numerically relaxed magnetotail equilibrium, similar to the linear code initial condition. The calculations show that current layer with tailward gradient of the normal component of the magnetic field is unstable to wavelengths longer than the curvature radius of the field line. The segment of the current sheet with the earthward gradient of the normal component makes some stabilizing effect (the same effect is registered in the linearized MHD simulations) due to the minimum of the total pressure localized in the center of the sheet. The overall growth rate is close to the theoretical double-gradient estimate averaged over the computational domain.
  •  
5.
  • Korovinskiy, D. B., et al. (författare)
  • The double-gradient magnetic instability : Stabilizing effect of the guide field
  • 2015
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the dawn-dusk magnetic field component in stabilizing of the magnetotail flapping oscillations is investigated in the double-gradient model framework (Erkaev et al., Phys. Rev. Lett. 99, 235003 (2007)), extended for the magnetotail-like configurations with non-zero guide field By. Contribution of the guide field is examined both analytically and by means of linearized 2-dimensional (2D) and non-linear 3-dimensional (3D) MHD modeling. All three approaches demonstrate the same properties of the instability: stabilization of current sheet oscillations for short wavelength modes, appearing of the typical (fastest growing) wavelength lambda(peak) of the order of the current sheet width, decrease of the peak growth rate with increasing B-y value, and total decay of the mode for B-y similar to 0: 5 in the lobe magnetic field units. Analytical solution and 2D numerical simulations claim also the shift of lambda(peak) toward the longer wavelengths with increasing guide field. This result is barely visible in 3D simulations. It may be accounted for the specific background magnetic configuration, the pattern of tail-like equilibrium provided by approximated solution of the conventional Grad-Shafranov equation. The configuration demonstrates drastically changing radius of curvature of magnetic field lines, R-c. This, in turn, favors the "double-gradient" mode (lambda > R-c) in one part of the sheet and classical "ballooning" instability (lambda < R-c) in another part, which may result in generation of a "combined" unstable mode. (C) 2015 AIP Publishing LLC.
  •  
6.
  • Korovinskiy, D. B., et al. (författare)
  • The transition from "double-gradient" to ballooning unstable mode in bent magnetotail-like current sheet
  • 2019
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 26:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetotail-like magnetoplasma configuration is examined for the stability to the transversal mode by means of linear 2.5- and nonlinear 3-dimensional MHD simulations. The exact two-dimensional Kan-like solution of the Vlasov-Maxwell equations is utilized for background equilibrium bent current sheets. Both linear and nonlinear simulations reveal the same features: the bent current sheet is unstable to perturbations with the wave vector pointing in the out-of-plane direction; the unstable mode is localized in the summer hemisphere; in-plane plasma flow is rotating from the earthward/tailward direction in the near-Earth region to the vertical direction in the tail. Rotation of the plasma velocity and variation of the background plasma parameters in longitudinal (Earth-Sun) direction allow considering the observed plasma motions as a transient mode from the so-called double-gradient (in distant tail) to the conventional ballooning (close to the Earth) instability. It is found that the mode localization is controlled by second derivatives of the total pressure in longitudinal and normal (north-south) directions. This feature is rendered by a newly developed quasi-two-dimensional analytical model of the transversal mode in the bent current sheet. Published under license by AIP Publishing.
  •  
7.
  • Korovinskiy, D., et al. (författare)
  • MHD Modeling of the Kink "Double-gradient" Branch of the Ballooning Instability in the Magnetotail
  • 2014
  • Ingår i: NUMERICAL MODELING OF SPACE PLASMA FLOWS. - : ASTRONOMICAL SOC PACIFIC. - 9781583818602 ; , s. 149-154
  • Konferensbidrag (refereegranskat)abstract
    • We present a numerical investigation of the double-gradient mode, which is believed to be responsible for the magnetotail flapping oscillations the fast vertical oscillations of the Earth's magnetotail plasma sheet (quasiperiod similar to 100 - 200 s). It is known that this mode has an unstable solution in the region of the tailward-growing normal magnetic field component. The kink branch of the mode is the focus of our study. The instability is studied using the magnetotail near-equilibrium configuration, fixed by the approximate solution of the Grad-Shafranov equation. The linear three-dimensional numerical analysis is complemented with full 3-D MUD simulations. The results of our linearized MHD code agree with the theory, and the growth rate is found to be close to the peak value provided by an analytical estimate. Also, the eigenfunctions, calculated analytically, are very similar to the perturbations obtained numerically. The full 3D MHD simulations are initialized with the numerically relaxed magnetotail equilibrium, similar to the linear code initial condition. The calculations show that the double-gradient mode is excited in a region of small radii of the magnetic field lines curvature, which is in accordance with the analytical predictions. In contrast to the linearized MHD simulations, non-local interactions are involved; hence, the overall growth rate turns out to be close to the theoretical estimate averaged over the computational domain.
  •  
8.
  • Zaitsev, I., et al. (författare)
  • Cold ion energization at separatrices during magnetic reconnection
  • 2021
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 28:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Separatrices of magnetic reconnection host intense perpendicular Hall electric fields. The fields are produced by the decoupling of the ion and electron components and are associated with the in-plane electrostatic potential drop between the inflow and outflow regions. The width of these structures is typically less than the ion inertial length, which is small enough to demagnetize ions as they cross the layer. We investigate ion acceleration at separatrices by means of 2D particle-in-cell simulations of magnetic reconnection for two limiting cases: (1) a "GEM-like" setup (here GEM stands for geospace environmental modeling reconnection challenge) with the lobe ion thermal velocity equal to the thermal velocity of the initial current sheet ions, which is comparable to the Alfven velocity and (2) a "cold" ion setup, in which the temperature of the background lobe ions is 1/100 of the initial current sheet temperature. The separatrix Hall electric field is balanced by the ion inertia term in the cold background simulations. The effect is indicative of the quasi-steady local perpendicular acceleration. The electric field introduces a cross field beam of unmagnetized particles, which makes the ion distribution function strongly non-gyrotropic and susceptible to sub-ion scale instabilities. This acceleration mechanism nearly vanishes in the hot ion background simulations. Our particle-in-cell simulations are complemented by one-dimensional test particle calculations. They show that the hot ion particles experience energy-scattering after crossing the accelerating layer, whereas cold ions are uniformly energized up to the energies comparable to the electrostatic potential drop between the inflow and outflow regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy