SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Korpan Yaroslav I.) "

Search: WFRF:(Korpan Yaroslav I.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Korpan, Yaroslav I., et al. (author)
  • Formaldehyde-sensitive conductometric sensors based on commercial and recombinant formaldehyde dehydrogenase
  • 2010
  • In: Microchimica Acta. - : Springer Science and Business Media LLC. - 1436-5073 .- 0026-3672. ; 170:3-4, s. 337-344
  • Journal article (peer-reviewed)abstract
    • Novel formaldehyde-sensitive conductometric biosensors have been developed that are based on commercial bacterial formaldehyde dehydrogenase (FDH) from Pseudomonas putida and recombinant formaldehyde dehydrogenase (rFDH) from the yeast Hansenula polymorpha as the bio-recognition elements. The bio-recognition membranes have mono-layer architecture and consist of enzyme cross-linked with albumin and of the cofactors NAD (for FDH-based sensor) or NAD and glutathione (for rFDH-based sensor). This architecture of the biosensor allows the determination of formaldehyde without adding NAD and glutathione to the analyzed sample at every analysis and conducting measurements on the same transducer without cofactors regeneration since the bio-membrane contains it at high concentration (100 mM for NAD and 20 mM for glutathione). The response is linear in the range from 10 to 200 mM of formaldehyde concentration depending on the enzyme used. The dependence of the biosensor output signals on pH and buffer concentration as well as operational/storage stability and selectivity/specificity of the developed conductometric biosensors have been investigated. The relative standard deviation of the intra-sensor response did not exceed 4% and 10% for rFDH- and FDH-based sensors, respectively. The relative standard deviation of the inter-sensor response constituted 20% for both dehydrogenases used. The biosensors have been validated for formaldehyde detection in some real samples of pharmaceutical (Formidron), disinfectant (Descoton forte) and an industrial product (Formalin). A good correlation does exist between the concentration values measured by the conductometric biosensor developed in this work, an enzymatic method, amperometric biosensors developed earlier, and standard analytical methods of formaldehyde determination.
  •  
2.
  •  
3.
  • Zhybak, Mykhailo T., et al. (author)
  • Amperometric L-arginine biosensor based on a novel recombinant arginine deiminase
  • 2017
  • In: Microchimica Acta. - : SPRINGER WIEN. - 0026-3672 .- 1436-5073. ; 184:8, s. 2679-2686
  • Journal article (peer-reviewed)abstract
    • The authors describe an amperometric biosensor for the amino acid L-arginine (L-Arg). It is based on the use of a Nafion/Polyaniline (PANi) composite on a platinum screen-printed electrode (Pt-SPE) using a novel recombinant arginine deiminase isolated from Mycoplasma hominis. The protein was over-expressed, purified and employed as a biorecognition element of the sensor. Enzymatic hydrolysis of L-Arg leads to the formation of ammonium ions which diffuse into the Nafion/PANi layer and induce the electroreduction of PANi at a potential of -0.35 V (vs Ag/AgCl). L-Arg sensitivity is 684 +/- 32 A.M-1.m(-2), and the apparent Michaelis-Menten constant K-M(app)) is 0.31 +/- 0.05 mM. The calibration plot is linear over the range 3-200 mu M L-Arg, the limit of detection is 1 mu M, and the response time (for 90% of the total signal change to occur) is 15 s. The sensor is selective and exhibits good storage stability (amp;gt; 1 month without loss in signal). The biosensor was applied to the analysis of L-Arg in pharmaceutical samples and of ammonium and L-Arg in spiked human plasma obtained from blood of healthy volunteers and those with a hepatic disorder. Data generated were found to be in good agreement with a reference fluorometric enzymatic assay.
  •  
4.
  • Zhybak, Mykhailo T., et al. (author)
  • Direct detection of ammonium ion by means of oxygen electrocatalysis at a copper-polyaniline composite on a screen-printed electrode
  • 2016
  • In: Microchimica Acta. - : Springer Science and Business Media LLC. - 0026-3672 .- 1436-5073. ; 183:6, s. 1981-1987
  • Journal article (peer-reviewed)abstract
    • We describe a composite material for use in electrochemical oxygen reduction. A screen-printed electrode (SPE) was consecutively modified with electrodeposited copper, a Nafion membrane and electropolymerized polyaniline (PANi) to give an electrocatalytic composite of type PANi/Nafion/Cu2O/SPE that displays good electrical conductivity at neutral pH values. It is found that the presence of ammonia causes complex formation with Cu(I), and this causes electroreduction of oxygen to result in an increased cathodic current. The finding was applied to the quantification of ammonium ions in the 1 to 1000 μM concentration range by amperometry at −0.45 V (vs. Ag/AgCl). This Faradaic phenomenon offers the advantage of direct voltammetric detection, one of the lowest known limits of detection (0.5 μM), and high sensitivity (250 mA∙M−1∙cm−2). It was applied to the determination of ammonium ion in human serum where it compared well with the photometric routine approach for clinical analysis using glutamate dehydrogenase. [Figure not available: see fulltext.]
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view