SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kosinska Eriksson Urszula 1976) "

Sökning: WFRF:(Kosinska Eriksson Urszula 1976)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backmark, Anna, 1979, et al. (författare)
  • Affinity tags can reduce merohedral twinning of membrane protein crystals
  • 2008
  • Ingår i: Acta Crystallographica. Section D: Biological Crystallography. - 1399-0047 .- 0907-4449. ; D64, s. 1183-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents a comparison of the crystal packing of three eukaryotic membrane proteins: human aquaporin 1, human aquaporin 5 and a spinach plasma membrane aquaporin. All were purified from expression constructs both with and without affinity tags. With the exception of tagged aquaporin 1, all constructs yielded crystals. Two significant effects of the affinity tags were observed: crystals containing a tag typically diffracted to lower resolution than those from constructs encoding the protein sequence alone and constructs without a tag frequently produced crystals that suffered from merohedral twinning. Twinning is a challenging crystallographic problem that can seriously hinder solution of the structure. Thus, for integral membrane proteins, the addition of an affinity tag may help to disrupt the approximate symmetry of the protein and thereby reduce or avoid merohedral twinning.
  •  
2.
  • Fischer, Gerhard, 1978, et al. (författare)
  • Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism.
  • 2009
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885 .- 1544-9173. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins are transmembrane proteins that facilitate the flow of water through cellular membranes. An unusual characteristic of yeast aquaporins is that they frequently contain an extended N terminus of unknown function. Here we present the X-ray structure of the yeast aquaporin Aqy1 from Pichia pastoris at 1.15 A resolution. Our crystal structure reveals that the water channel is closed by the N terminus, which arranges as a tightly wound helical bundle, with Tyr31 forming H-bond interactions to a water molecule within the pore and thereby occluding the channel entrance. Nevertheless, functional assays show that Aqy1 has appreciable water transport activity that aids survival during rapid freezing of P. pastoris. These findings establish that Aqy1 is a gated water channel. Mutational studies in combination with molecular dynamics simulations imply that gating may be regulated by a combination of phosphorylation and mechanosensitivity.
  •  
3.
  • Frick, Anna, 1982, et al. (författare)
  • X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking.
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:17, s. 6305-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein-protein interactions involved in cellular sorting of AQP2. Two Cd(2+)-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking.
  •  
4.
  • Kosinska-Eriksson, Urszula, 1976, et al. (författare)
  • Subangstrom resolution X-ray structure details aquaporin-water interactions.
  • 2013
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 340:6138, s. 1346-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins are membrane channels that facilitate the flow of water across biological membranes. Two conserved regions are central for selective function: the dual asparagine-proline-alanine (NPA) aquaporin signature motif and the aromatic and arginine selectivity filter (SF). Here, we present the crystal structure of a yeast aquaporin at 0.88 angstrom resolution. We visualize the H-bond donor interactions of the NPA motif's asparagine residues to passing water molecules; observe a polarized water-water H-bond configuration within the channel; assign the tautomeric states of the SF histidine and arginine residues; and observe four SF water positions too closely spaced to be simultaneously occupied. Strongly correlated movements break the connectivity of SF waters to other water molecules within the channel and prevent proton transport via a Grotthuss mechanism.
  •  
5.
  •  
6.
  • Söndergaard Hansen, Jesper, et al. (författare)
  • Perilipin 1 binds to aquaporin 7 in human adipocytes and controls its mobility via protein kinase A mediated phosphorylation
  • 2016
  • Ingår i: Metabolism-Clinical and Experimental. - : Elsevier BV. - 0026-0495. ; 65:12, s. 1731-1742
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulating evidence suggests that dysregulated glycerol metabolism contributes to the pathophysiology of obesity and type 2 diabetes. Glycerol efflux from adipocytes is regulated by the aquaglyceroporin AQP7, which is translocated upon hormone stimulation. Here, we propose a molecular mechanism where the AQP7 mobility in adipocytes is dependent on perilipin 1 and protein kinase A. Biochemical analyses combined with ex vivo studies in human primary adipocytes, demonstrate that perilipin 1 binds to AQP7, and that catecholamine activated protein kinase A phosphorylates the N-terminus of AQP7, thereby reducing complex formation. Together, these findings are indicative of how glycerol release is controlled in adipocytes, and may pave the way for the future design of drugs against human metabolic pathologies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy