SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kosmach D.) "

Sökning: WFRF:(Kosmach D.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kosmach, D. A., et al. (författare)
  • Methane in the surface waters of Northern Eurasian marginal seas
  • 2015
  • Ingår i: Doklady. Chemistry. - 0012-5008 .- 1608-3113. ; 465, s. 281-285
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 12 000 measurements of the dissolved methane (CH4) concentrations in the surface waters of Northern Eurasian marginal seas (Barents, Kara, Laptev, Chukchi, and Bering Seas, Sea of Okhotsk, and Sea of Japan) during two marine expeditions (September-October 2011 and 2012) show that all seas are CH4 source to the atmosphere, but the Laptev and East Siberian seas demonstrate the strongest signal.
  •  
2.
  • Sanchez-Garcia, Laura, et al. (författare)
  • Characterisation of Three Regimes of Collapsing Arctic Ice Complex Deposits on the SE Laptev Sea Coast using Biomarkers and Dual Carbon Isotopes
  • 2014
  • Ingår i: Permafrost and Periglacial Processes. - : Wiley. - 1045-6740 .- 1099-1530. ; 25:3, s. 172-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic amplification of climate warming is intensifying the thaw and coastal erosion of the widespread and carbon-rich Siberian Ice Complex Deposits (ICD). Despite the potential for altering long-term carbon dynamics in the Arctic, the susceptibility of organic carbon (OC) to degradation as the ICD thaw is poorly characterised. This study identifies signs of OC degradation in three Siberian ICD regimes of coastal erosion through elemental, isotopic and molecular analyses. The degree of erosion appears to determine the extent of degradation. The moisture-limited and beach-protected ICD bluff near Buor-Khaya Cape, characterised by thermokarst mounds (baydzherakhs), represents a dormant regime with limited ongoing degradation. Conversely, the more exposed ICD scarps on eroding riverbanks (Olenek Channel, Lena Delta) and coastal slopes (Muostakh Island) showed more pronounced signs of ongoing OC decay. Different parameters suggest that degradation can partially explain the shift of the OC signature with C-14 age in the thawing ICD. Exposure time, degree of erosion, slope gradient and moisture conditions appear to be key factors determining the degradation propensity of OC in exposed ICD. These field results document the lability of OC in ICD upon thaw and illustrate the potential for transferring old OC into the rapidly cycling atmosphere-biosphere carbon pools.
  •  
3.
  • Semiletov, I. P., et al. (författare)
  • Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion
  • 2011
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 8:9, s. 2407-2426
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lena River integrates biogeochemical signals from its vast drainage basin, and the integrated signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon (OC) into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered to be quasi-steady-state processes. An increase in Lena discharge exerts opposite effects on total organic (TOC) and total inorganic (TCO(2)) carbon: TOC concentration increases, while TCO(2) concentration decreases. Significant inter-annual variability in mean values of TCO(2), TOC, and their sum (total carbon, TC) has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge. There is a negative correlation in the Lena River between TC in September and its mean discharge in August; a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea. Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C yr(-1). The annual Lena River discharge of particulate organic carbon (POC) can be as high as 0.38 Tg (moderate to high estimate). If we instead accept Lisytsin's (1994) statement that 85-95% of total particulate matter (PM) (and POC) precipitates on the marginal filter, then only about 0.03-0.04 Tg of Lena River POC reaches the Laptev Sea. The Lena's POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is estimated to be about 4 Tg. Observations support the hypothesis of a dominant role for coastal erosion (Semiletov, 1999a, b) in East Siberian Arctic Shelf (ESAS) sedimentation and the dynamics of the carbon/carbonate system. The Lena River is characterized by relatively high concentrations of the primary greenhouse gases, dissolved carbon dioxide (CO(2)) and methane (CH(4)). During all seasons the river is supersaturated in CO(2) compared to the atmosphere, by up to 1.5-2 fold in summer, and 4-5 fold in winter. This results in a significant CO(2) supersaturation in the adjacent coastal sea. Localized areas of dissolved CH(4) along the Lena River and in the Lena delta channels may reach 100 nM, but the CH(4) concentration decreases to 5-20nM towards the sea, which suggests that riverborne export of CH(4) plays but a minor role in determining the ESAS CH(4) budget in coastal waters. Instead, the seabed appears to be the source that provides most of the CH(4) to the Arctic Ocean.
  •  
4.
  • Vonk, J. E., et al. (författare)
  • Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 489:7414, s. 137-140
  • Tidskriftsartikel (refereegranskat)abstract
    • The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere(1,2). Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century(3). Ancient Ice Complex deposits outcropping along the similar to 7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS)(4,5), and associated shallow subsea permafrost(6,7), are two large pools of permafrost carbon(8), yet their vulnerabilities towards thawing and decomposition are largely unknown(9-11). Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region(12,13). There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 +/- 2 per cent) the sedimentary carbon budget of the ESAS, the world's largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 +/- 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies(14). We estimate that about two-thirds (66 +/- 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming(2,13).
  •  
5.
  • Wild, B., et al. (författare)
  • Quantity, origin and degradation state of organic matter in subsea permafrost on the East Siberian Arctic shelf
  • 2019
  • Ingår i: Conference Proceedings, 29th International Meeting on Organic Geochemistry. - : European Association of Geoscientists & Engineers. - 9789462823044
  • Konferensbidrag (refereegranskat)abstract
    • Based on a unique set of three drill cores, we characterize the quantity, origin and degradation state of organic matter through the subsea permafrost with higher resolution across the current thaw front, to improve our understanding of its vulnerability to decomposition upon thaw.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy