SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kostopoulou ON) "

Sökning: WFRF:(Kostopoulou ON)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Byskata, K, et al. (författare)
  • Targeted Therapy with PI3K, PARP, and WEE1 Inhibitors and Radiotherapy in HPV Positive and Negative Tonsillar Squamous Cell Carcinoma Cell Lines Reveals Synergy while Effects with APR-246 Are Limited
  • 2023
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC) is rising in incidence, but chemoradiotherapy is not curative for all. Therefore, targeted therapy with PI3K (BYL719), PARP (BMN-673), and WEE1 (MK-1775) inhibitors alone or combined was pursued with or without 10 Gy and their effects were analyzed by viability, proliferation, and cytotoxicity assays on the TSCC/BOTSCC cell lines HPV+ UPCI-SCC-154 and HPV− UT-SCC-60A. Effective single drug/10 Gy combinations were validated on additional TSCC lines. Finally, APR-246 was assessed on several TSCC/BOTSCC cell lines. BYL719, BMN-673, and MK-1775 treatments induced dose dependent responses in HPV+ UPCI-SCC-154 and HPV− UT-SCC-60A and when combined with 10 Gy, synergistic effects were disclosed, as was also the case upon validation. Using BYL719/BMN-673, BYL719/MK-1775, or BMN-673/MK-1775 combinations on HPV+ UPCI-SCC-154 and HPV− UT-SCC-60A also induced synergy compared to single drug administrations, but adding 10 Gy to these synergistic drug combinations had no further major effects. Low APR-246 concentrations had limited usefulness. To conclude, synergistic effects were disclosed when complementing single BYL719 BMN-673 and MK-1775 administrations with 10 Gy or when combining the inhibitors, while adding 10 Gy to the latter did not further enhance their already additive/synergistic effects. APR-246 was suboptimal in the present context.
  •  
2.
  •  
3.
  •  
4.
  • Gustafsson, RKL, et al. (författare)
  • Direct infection of primary endothelial cells with human cytomegalovirus prevents angiogenesis and migration
  • 2015
  • Ingår i: The Journal of general virology. - : Microbiology Society. - 1465-2099 .- 0022-1317. ; 96:12, s. 3598-3612
  • Tidskriftsartikel (refereegranskat)abstract
    • Human cytomegalovirus (hCMV) is a beta herpesvirus that establishes lifelong infection. Although the virus does not usually cause overt clinical symptoms in immunocompetent individuals it can have deleterious effects in immunocompromised patients, such as those on post-transplant medication or with HIV infection. hCMV is the most common congenital infection and can lead to serious fetal sequelae. Endothelial cells (ECs) are natural hosts for hCMVin vivo, therefore, investigations of how this cell type is modulated by infection are key to understanding hCMV pathogenesis. Previous studies have examined the effect of secretomes from hCMV-infected cells on EC angiogenesis, whereas the effect of direct infection on this process has not been so well investigated. Here, we show that placental ECs are viral targets during congenital infection and that vessels in infected tissue appear morphologically abnormal. We demonstrate that the clinical hCMV strain VR1814 impaired EC tube assembly inin vitroangiogenesis assays and inhibited wound healing ability in scratch assays. Secretomes from infected cultures did not impair angiogenesis of uninfected ECs, suggesting that cell-intrinsic changes, as opposed to secreted factors, were responsible. We observed viral gene transcription dependent downregulation of the expression of angiogenesis-associated genes, including angiopoietin-2, TEK receptor and vascular endothelial growth factor receptors. An alternative clinical hCMV stain, TB40E showed similar effects on EC angiogenesis. Together, our data indicate that direct infection with hCMV can induce an anti-migratory and anti-angiogenic EC phenotype, which could have a detrimental effect on the vasculature development in infected tissues.
  •  
5.
  •  
6.
  •  
7.
  • Holzhauser, S, et al. (författare)
  • Targeted Therapy With PI3K and FGFR Inhibitors on Human Papillomavirus Positive and Negative Tonsillar and Base of Tongue Cancer Lines With and Without Corresponding Mutations
  • 2021
  • Ingår i: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 11, s. 640490-
  • Tidskriftsartikel (refereegranskat)abstract
    • Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC), the major subsites of oropharyngeal squamous cell carcinoma (OPSCC) have favorable outcome, but upon relapse, outcome is poor and new therapies needed. Since, phosphatidyl-inositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) and fibroblast-growth-factor-receptor-3 (FGFR3) mutations often occur in such tumors, here, we tested targeted therapy directed to such genes in TSCC/BOTSCC cell lines. We also combined the two types of inhibitors with each other, and cisplatin or docetaxel that are used clinically.MethodsThe HPV+ CU-OP-2, -3, -20, UPCI-SCC-154, and HPV- CU-OP-17 and UT-SCC-60A cell lines were first tested for common PIK3CA/FGFR3 mutations by competitive-allele-specific TaqMan-PCR. They were then treated with the food and drug administration (FDA) approved drugs, alpelisib (BYL719) and erdafitinib (JNJ-42756493) alone and in combination with cisplatin or docetaxel. Viability, proliferation, apoptosis and cytotoxicity responses were thereafter followed by WST-1 assays and the IncuCyte S3 Live® Cell Analysis System.ResultsHPV+ CU-OP-2 had a pS249C-FGFR3, and like CU-OP-20, a pE545K-PIK3CA mutation, while no other lines had such mutations. Irrespectively, dose dependent responses to all PI3K/FGFR inhibitors were obtained, and upon combining the inhibitors, positive effects were observed. Cisplatin and docetaxel also induced dose dependent responses, and upon combination with the inhibitors, both positive and neutral effects were found.ConclusionsThe data suggest that FDA approved drugs alpelisib and erdafitinib efficiently inhibit TSCC/BOTSCC cell line growth, especially when combined irrespective of presence of corresponding mutations and should be further explored, for use upon recurrent disease.
  •  
8.
  •  
9.
  • Jonsson, LO, et al. (författare)
  • Heterogeneities in Cell Cycle Checkpoint Activation Following Doxorubicin Treatment Reveal Targetable Vulnerabilities in TP53 Mutated Ultra High-Risk Neuroblastoma Cell Lines
  • 2021
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 22:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Most chemotherapeutics target DNA integrity and thereby trigger tumour cell death through activation of DNA damage responses that are tightly coupled to the cell cycle. Disturbances in cell cycle regulation can therefore lead to treatment resistance. Here, a comprehensive analysis of cell cycle checkpoint activation following doxorubicin (doxo) treatment was performed using flow cytometry, immunofluorescence and live-cell imaging in a panel of TP53 mutated ultra high-risk neuroblastoma (NB) cell lines, SK-N-DZ, Kelly, SK-N-AS, SK-N-FI, and BE(2)-C. Following treatment, a dose-dependent accumulation in either S- and/or G2/M-phase was observed. This coincided with a heterogeneous increase of cell cycle checkpoint proteins, i.e., phos-ATM, phos-CHK1, phos-CHK2, Wee1, p21Cip1/Waf1, and p27Kip among the cell lines. Combination treatment with doxo and a small-molecule inhibitor of ATM showed a delay in regrowth in SK-N-DZ, of CHK1 in BE(2)-C, of Wee1 in SK-N-FI and BE(2)-C, and of p21 in Kelly and BE(2)-C. Further investigation revealed, in all tested cell lines, a subset of cells arrested in mitosis, indicating independence on the intra-S- and/or G2/M-checkpoints. Taken together, we mapped distinct cell cycle checkpoints in ultra high-risk NB cell lines and identified checkpoint dependent and independent druggable targets.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy