SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kotilainen Titta) "

Sökning: WFRF:(Kotilainen Titta)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brelsford, Craig C., et al. (författare)
  • Do UV‐A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana?
  • 2019
  • Ingår i: Physiologia Plantarum. - : Blackwell Publishing. - 0031-9317 .- 1399-3054. ; 165:3, s. 537-554
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied how plants acclimated to growing conditions that included combinations of blue light (BL) and ultraviolet (UV)‐A radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under‐canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild‐type were compared with mutants lacking functional blue light and UV photoreceptors: phototropin 1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using light‐emitting‐diode (LED) lamps in a controlled environment to create treatments with or without BL, in a split‐plot design with or without UV‐A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 min of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (ϕPSII, a proxy for photosynthetic performance) and dark‐adapted maximum quantum yield (Fv/Fm to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic compound accumulation in response to BL and UV‐A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV‐A dose. Interestingly, phototropin 1 partially mediated constitutive accumulation of phenolic compounds in the absence of BL. Low‐irradiance BL and UV‐A did not improve ϕPSII and Fv/Fm upon our acute high‐light treatment; however, CRYs played an important role in ameliorating high‐light stress.
  •  
2.
  • Hernandez Velasco, Marco, 1985-, et al. (författare)
  • New technology for pre-cultivation of forest seedlings under LED lamps – modification of light conditions to mitigate light shock stress after transplanting to open land
  • 2014
  • Ingår i: 2nd Restoring Forests Conference Abstracts.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Forest restoration aims to cope with the increasing demand on forest products, as well as an aid in fighting climate change and compensating for accelerated deforestation. Funded by the European Commission under the Seventh Framework Program (FP7), the Zephyr project aims to introduce a zero-impact incubator for the pre-cultivation of forest regeneration materials. The consortium, involving 14 organizations of 10 different European countries, is developing innovative and cost-efficient technologies that will allow the production of standardized high quality forest seedlings ready to be transplanted. The technologies will be integrated into a functional and transportable unit not affected by the outdoor conditions and producing minimal emissions. To achieve this, the system will be powered mainly by solar energy and will recycle the water used. Specifically developed devices such as wireless sensors and LED lamps will be used to monitor and enhance the cultivation process, reduce the energy consumption and decrease the overall cost due to their high efficiency, long lifetime and low maintenance.The LED grow lights used have a continuous spectrum that has been selected and specifically tailored to the plants’ needs. Nevertheless, seedlings pre-cultivated under LED lights could face UV stress after transplanting to open land as these wavelengths are not included in the light spectrum used in the growth chamber. Moreover, light intensity levels during indoor cultivation are usually much lower compared to the outdoor conditions, which can cause a light shock to the plants. Juvenile plants are less efficient in the utilization of the absorbed light, and therefore, prone to photoinhibition by radiation fluxes that usually do not harm mature plants. Plant protective mechanisms against UV radiation and high PAR (400-700nm) light intensity are partly overlapping. Hence, exposure to UV or high light intensity before transplanting, or introducing a transient phase by using shading cloths during transplantation period could help to reduce this stress.The aim was to reduce the transplanting stress of Picea abies and Pinus sylvestris seedlings grown under LED-lamps for the first 5 weeks of cultivation. We investigated how different methods; UV-A pre-treatment or high irradiance during the indoor cultivation or usage of shading cloths for the first week(s) after transplanting outdoors can be used to mitigate light shock stress. Different methods and exposure times showed varying ability in ensuring good seedling growth and survival.
  •  
3.
  •  
4.
  •  
5.
  • Robson, T. Matthew, et al. (författare)
  • A perspective on ecologically relevant plant-UV research and its practical application
  • 2019
  • Ingår i: Photochemical and Photobiological Sciences. - : Royal Society of Chemistry. - 1474-905X .- 1474-9092. ; 18:5, s. 970-988
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.
  •  
6.
  • Siipola, Sari M., et al. (författare)
  • Epidermal UV-A absorbance and whole leaf flavonoid composition in pea respond more to solar blue light than solar UV radiation
  • 2015
  • Ingår i: Plant, Cell and Environment. - : Blackwell Publishing. - 0140-7791 .- 1365-3040. ; 38:5, s. 941-952
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV‐A and UV‐B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV‐B; (2) attenuate UV‐B and UV‐A < 370 nm; (3) attenuate UV‐B and UV‐A; (4) attenuate UV‐B, UV‐A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole‐leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV‐B responses were not significant. These results show that pea plants regulate epidermal UV‐A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV‐B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy