SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kottwitz Matthew) "

Sökning: WFRF:(Kottwitz Matthew)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Enright, Michael J., et al. (författare)
  • Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots
  • 2022
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:17, s. 7576-7587
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of bright, near-infrared-emissive quantum dots (QDs) is a necessary requirement for the realization of important new classes of technology. Specifically, there exist significant needs for brighter, heavy metal-free, near-infrared (NIR) QDs for applications with high radiative efficiency that span diverse applications, including down-conversion emitters for high-performance luminescent solar concentrators. We use a combination of theoretical and experimental approaches to synthesize bright, NIR luminescent InAs/InP/ZnSe QDs and elucidate fundamental material attributes that remain obstacles for development of near-unity NIR QD luminophores. First, using Monte Carlo ray tracing, we identify the atomic and electronic structural attributes of InAs core/shell, NIR emitters, whose luminescence properties can be tailored by synthetic design to match most beneficially those of high-performance, single-band-gap photovoltaic devices based on important semiconductor materials, such Si or GaAs. Second, we synthesize InAs/InP/ZnSe QDs based on the optical attributes found to maximize LSC performance and develop methods to improve the emissive qualities of NIR emitters with large, tunable Stokes ratios, narrow emission linewidths, and high luminescence quantum yields (here reaching 60 +/- 2%). Third, we employ atomistic electronic structure calculations to explore charge carrier behavior at the nanoscale affected by interfacial atomic structures and find that significant exciton occupation of the InP shell occurs in most cases despite the InAs/InP type I bulk band alignment. Furthermore, the density of the valence band maximum state extends anisotropically through the (111) crystal planes to the terminal InP surfaces/interfaces, indicating that surface defects, such as unpassivated phosphorus dangling bonds, located on the (111) facets play an outsized role in disrupting the valence band maximum and quenching photoluminescence.
  •  
2.
  • Kottwitz, Matthew, et al. (författare)
  • Local Structure and Electronic State of Atomically Dispersed Pt Supported on Nanosized CeO2
  • 2019
  • Ingår i: ACS Catalysis. - : AMER CHEMICAL SOC. - 2155-5435 .- 2155-5435. ; 9:9, s. 8738-8748
  • Tidskriftsartikel (refereegranskat)abstract
    • Single atom catalysts (SACs) have shown high activity and selectivity in a growing number of chemical reactions. Many efforts aimed at unveiling the structure-property relationships underpinning these activities and developing synthesis methods for obtaining SACs with the desired structures are hindered by the paucity of experimental methods capable of probing the attributes of local structure, electronic properties, and interaction with support-features that comprise key descriptors of their activity. In this work, we describe a combination of experimental and theoretical approaches that include photon and electron spectroscopy, scattering, and imaging methods, linked by density functional theory calculations, for providing detailed and comprehensive information on the atomic structure and electronic properties of SACs. This characterization toolbox is demonstrated here using a model single atom Pt/CeO2 catalyst prepared via a sol-gel-based synthesis method. Isolated Pt atoms together with extra oxygen atoms passivate the (100) surface of nanosized ceria. A detailed picture of the local structure of Pt nearest environment emerges from this work involving the bonding of isolated Pt2+ ions at the hollow sites of perturbed (100) surface planes of the CeO2 support, as well as a substantial (and heretofore unrecognized) strain within the CeO2 lattice in the immediate vicinity of the Pt centers. The detailed information on structural attributes provided by our approach is the key for understanding and improving the properties of SACs.
  •  
3.
  • Li, Yuanyuan, et al. (författare)
  • Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxide-supported noble metal catalysts have been extensively studied for decades for the water gas shift (WGS) reaction, a catalytic transformation central to a host of large volume processes that variously utilize or produce hydrogen. There remains considerable uncertainty as to how the specific features of the active metal-support interfacial bonding-perhaps most importantly the temporal dynamic changes occurring therein-serve to enable high activity and selectivity. Here we report the dynamic characteristics of a Pt/CeO2 system at the atomic level for the WGS reaction and specifically reveal the synergistic effects of metal-support bonding at the perimeter region. We find that the perimeter Pt-0-O vacancy-Ce3+ sites are formed in the active structure, transformed at working temperatures and their appearance regulates the adsorbate behaviors. We find that the dynamic nature of this site is a key mechanistic step for the WGS reaction. Revealing the structure and dynamics of active sites is essential to understand catalytic mechanisms. Here the authors demonstrate the dynamic nature of perimeter Pt-0-O vacancy-Ce3+ sites in Pt/CeO2 and the key effects of their dynamics on the mechanism of the water gas shift reaction.
  •  
4.
  • Pan, Chengsi, et al. (författare)
  • Energy Storage Mechanisms in High-Capacity Graphitic C3N4 Cathodes for Al-Ion Batteries
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:19, s. 10288-10297
  • Tidskriftsartikel (refereegranskat)abstract
    • Al-ion batteries are a promising alternative to lithium-ion batteries because of the unique advantages of the Al anode, such as low cost and high specific capacities. Cathodes developed for these batteries, however, suffer from various problems, which include low discharge voltages with rapid capacity fade (e.g., V2O5) and unclear speciation of the Al intercalation mechanism with insufficient capacity (e.g., graphite). The lack of ideal cathode materials is currently a major challenge for Al-ion batteries. Here, a high-capacity layered organic cathode composed of graphitic carbon nitride (g-C3N4) is developed for Al-ion batteries. Full cells constructed using g-C3N4 paired with an Al metal in an AlCl3/[EMIm]Cl electrolyte showed an open-circuit potential of 1.9 V and a capacity of 90 mAh/g cycled at 0.1 C. This battery also exhibits a stable capacity of 75 mAh/g cycled at 0.2 C in a long-term test (500 cycles). The data show that the layered porous structure of the organic cathode material facilitates a reversible deintercalation of [AlCl4](-) anions, substituting them for Cl- in a more oxidized form of the g-C3N4. The data further illustrate that the anion shuttle is associated with a conversion between N and N+. states at the tertiary N
  •  
5.
  • Wang, Haodong, et al. (författare)
  • Aliovalent Doping of CeO2 Improves the Stability of Atomically Dispersed Pt
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:44, s. 52736-52742
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomically dispersed supported catalysts hold considerable promise as catalytic materials. The ability to employ and stabilize them against aggregation in complex process environments remains a key challenge to the elusive goal of 100% atom utilization in catalysis. Herein, using a Gd-doped ceria support for atomically dispersed surface Pt atoms, we establish how the combined effects of aliovalent doping and oxygen vacancy generation provide dynamic mechanisms that serve to enhance the stability of supported single-atom configurations. Using correlated, in situ X-ray absorption, photoelectron, and vibrational spectroscopy methods for the analysis of samples on the two types of support (with and without Gd doping), we establish that the Pt atoms are located proximal to Gd dopants, forming a speciation that serves to enhance the thermal stability of Pt atoms against aggregation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy