SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koufigar S.) "

Sökning: WFRF:(Koufigar S.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Messi, F., et al. (författare)
  • The neutron-tagging facility at Lund University
  • 2020
  • Ingår i: Modern Neutron Detection : Proceedings of a Technical Meeting - Proceedings of a Technical Meeting. - 1011-4289. - 9789201265203 - 9789201266200 ; :1935, s. 287-297
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Over the last decades, the field of thermal neutron detection has overwhelmingly employed He-3-based technologies. The He-3 crisis together with the forthcoming establishment of the European Spallation Source have necessitated the development of new technologies for neutron detection. Today, several promising He-3-free candidates are under detailed study and need to be validated. This validation process is in general long and expensive. The study of detector prototypes using neutron-emitting radioactive sources is a cost-effective solution, especially for preliminary investigations. That said, neutron-emitting sources have the general disadvantage of broad, structured, emitted-neutron energy ranges. Further, the emitted neutrons often compete with unwanted backgrounds of gamma-rays, alpha-particles, and fission-fragments. By blending experimental infrastructure such as shielding to provide particle beams with neutron-detection techniques such as tagging, disadvantages may be converted into advantages. In particular, a technique known as tagging involves exploiting the mixed-field generally associated with a neutron-emitting source to determine neutron time-of-flight and thus energy on an event-by-event basis. This allows for the definition of low-cost, precision neutron beams. The Source-Testing Facility, located at Lund University in Sweden and operated by the SONNIG Group of the Division of Nuclear Physics, was developed for just such low-cost studies. Precision tagged-neutron beams derived from radioactive sources are available around-the-clock for advanced detector diagnostic studies. Neutron measurements performed at the Source Testing Facility are thus cost-effective and have a very low barrier for entry. In this paper, we present an overview of the project.
  •  
2.
  • Scherzinger, Julius, et al. (författare)
  • A comparison of untagged gamma-ray and tagged-neutron yields from 241AmBe and 238PuBe sources
  • 2017
  • Ingår i: Applied Radiation and Isotopes. - : Elsevier BV. - 0969-8043 .- 1872-9800. ; 127, s. 98-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Untagged gamma-ray and tagged-neutron yields from 241AmBe and 238PuBe mixed-field sources have been measured. Gamma-ray spectroscopy measurements from 1 to 5 MeV were performed in an open environment using a CeBr3 detector and the same experimental conditions for both sources. The shapes of the distributions are very similar and agree well with previous data. Tagged-neutron measurements from 2 to 6 MeV were performed in a shielded environment using a NE-213 liquid-scintillator detector for the neutrons and a YAP(Ce) detector to tag the 4.44 MeV gamma-rays associated with the de-excitation of the first-excited state of 12C. Again, the same experimental conditions were used for both sources. The shapes of these distributions are also very similar and agree well with previous data, each other, and the ISO recommendation. Our 238PuBe source provides approximately 2.6 times more 4.44 MeV gamma-rays and 2.4 times more neutrons over the tagged-neutron energy range, the latter in reasonable agreement with the original full-spectrum source-calibration measurements performed at the time of their acquisition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy