SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kourist Robert) "

Sökning: WFRF:(Kourist Robert)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biler, Michal, et al. (författare)
  • Ground-State Destabilization by Active-Site Hydrophobicity Controls the Selectivity of a Cofactor-Free Decarboxylase
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 142:47, s. 20216-20231
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial arylmalonate decarboxylase (AMDase) and evolved variants have become a valuable tool with which to access both enantiomers of a broad range of chiral arylaliphatic acids with high optical purity. Yet, the molecular principles responsible for the substrate scope, activity, and selectivity of this enzyme are only poorly understood to date, greatly hampering the predictability and design of improved enzyme variants for specific applications. In this work, empirical valence bond and metadynamics simulations were performed on wild-type AMDase and variants thereof to obtain a better understanding of the underlying molecular processes determining reaction outcome. Our results clearly reproduce the experimentally observed substrate scope and support a mechanism driven by ground-state destabilization of the carboxylate group being cleaved by the enzyme. In addition, our results indicate that, in the case of the nonconverted or poorly converted substrates studied in this work, increased solvent exposure of the active site upon binding of these substrates can disturb the vulnerable network of interactions responsible for facilitating the AMDase-catalyzed cleavage of CO2. Finally, our results indicate a switch from preferential cleavage of the pro-(R) to the pro-(S) carboxylate group in the CLG-IPL variant of AMDase for all substrates studied. This appears to be due to the emergence of a new hydrophobic pocket generated by the insertion of the six amino acid substitutions, into which the pro-(S) carboxylate binds. Our results allow insight into the tight interaction network determining AMDase selectivity, which in turn provides guidance for the identification of target residues for future enzyme engineering.
  •  
2.
  • Cassimjee, Karim Engelmark, et al. (författare)
  • One-step enzyme extraction and immobilization for biocatalysis applications
  • 2011
  • Ingår i: Biotechnology Journal. - : Wiley. - 1860-6768 .- 1860-7314. ; 6:4, s. 463-469
  • Tidskriftsartikel (refereegranskat)abstract
    • An extraction/immobilization method for HIs(6) -tagged enzymes for use in synthesis applications is presented. By modifying silica oxide beads to be able to accommodate metal ions, the enzyme was tethered to the beads after adsorption of Co(II). The beads were successfully used for direct extraction of C. antarctica lipase B (CalB) from a periplasmic preparation with a minimum of 58% activity yield, creating a quick one-step extraction-immobilization protocol. This method, named HisSi Immobilization, was evaluated with five different enzymes [Candida antarctica lipase B (CalB), Bacillus subtilis lipase A (BslA), Bacillus subtilis esterase (BS2), Pseudomonas fluorescence esterase (PFE), and Solanum tuberosum epoxide hydrolase 1 (StEH1)]. Immobilized CalB was effectively employed in organic solvent (cyclohexane and acetonitrile) in a transacylation reaction and in aqueous buffer for ester hydrolysis. For the remaining enzymes some activity in organic solvent could be shown, whereas the non-immobilized enzymes were found inactive. The protocol presented in this work provides a facile immobilization method by utilization of the common His(6) -tag, offering specific and defined means of binding a protein in a specific location, which is applicable for a wide range of enzymes.
  •  
3.
  •  
4.
  •  
5.
  • Heinze, Birgit, et al. (författare)
  • Highly enantioselective kinetic resolution of two tertiary alcohols using mutants of an esterase from Bacillus subtilis
  • 2007
  • Ingår i: Protein Engineering Design & Selection. - : Oxford University Press (OUP). - 1741-0126 .- 1741-0134. ; 20:3, s. 125-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzyme-catalyzed kinetic resolutions of secondary alcohols are a standard procedure today and several lipases and esterases have been described to show high activity and enantioselectivity. In contrast, tertiary alcohols and their esters are accepted only by a few biocatalysts. Only lipases and esterases with a conserved GGG(A)X-motif are active, but show low activity combined with low enantioselectivity in the hydrolysis of tertiary alcohol esters. We show in this work that the problematic autohydrolysis of certain compounds can be overcome by medium and substrate engineering. Thus, 3-phenylbut-1-yn-3-yl acetate was hydrolyzed by the esterase from Bacillus subtilis (BS2, mutant Gly105Ala) with an enantioselectivity of E = 56 in the presence of 20% (v/v) DMSO compared to E = 28 without a cosolvent. Molecular modeling was used to study the interactions between BS2 and tertiary alcohol esters in their transition state in the active site of the enzyme. Guided by molecular modeling, enzyme variants with highly increased enantioselectivity were created. For example, a Glu188Asp mutant converted the trifluoromethyl analog of 3-phenylbut-1-yn-3-yl acetate with an excellent enantioselectivity (E > 100) yielding the (S)-alcohol with > 99%ee. In summary, protein engineering combined with medium and substrate engineering afforded tertiary alcohols of very high enantiomeric purity.
  •  
6.
  •  
7.
  • Kourist, Robert, et al. (författare)
  • Understanding promiscuous amidase activity of an esterase from Bacillus subtilis
  • 2008
  • Ingår i: ChemBioChem. - : Wiley. - 1439-4227 .- 1439-7633. ; 9:1, s. 67-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Water works. Bacillus subtilis esterase BS2 is a promiscuous esterase that shows amidase activity. This amidase activity was shown to depend on a hydrogen-bond network with the substrate amide hydrogen (indicated by arrow). When this stabilising hydrogen bond network was removed by a point mutation, the amide activity was significantly lowered in comparison with the esterase activity. (Figure Presented)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy