SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kovermann M.) "

Sökning: WFRF:(Kovermann M.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhou, T. K., et al. (författare)
  • Molecular Characterisation of Titin N2A and Its Binding of CARP Reveals a Titin/Actin Cross-linking Mechanism
  • 2021
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836. ; 433:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Striated muscle responds to mechanical overload by rapidly up-regulating the expression of the cardiac ankyrin repeat protein, CARP, which then targets the sarcomere by binding to titin N2A in the I-band region. To date, the role of this interaction in the stress response of muscle remains poorly understood. Here, we characterise the molecular structure of the CARP-receptor site in titin (UN2A) and its binding of CARP. We find that titin UN2A contains a central three-helix bundle fold (ca 45 residues in length) that is joined to N- and C-terminal flanking immunoglobulin domains by long, flexible linkers with partial helical content. CARP binds titin by engaging an a-hairpin in the three-helix fold of UN2A, the C-terminal linker sequence, and the BC loop in Ig81, which jointly form a broad binding interface. Mutagenesis showed that the CARP/N2A association withstands sequence variations in titin N2A and we use this information to evaluate 85 human single nucleotide variants. In addition, actin co-sedimentation, co-transfection in C2C12 cells, proteomics on heart lysates, and the mechanical response of CARP-soaked myofibrils imply that CARP induces the cross-linking of titin and actin myofilaments, thereby increasing myofibril stiffness. We conclude that CARP acts as a regulator of force output in the sarcomere that preserves muscle mechanical performance upon overload stress. Crown Copyright (C) 2021 Published by Elsevier Ltd. All rights reserved.
  •  
2.
  • Horvath, Istvan, 1979, et al. (författare)
  • Distinct growth regimes of α-synuclein amyloid elongation
  • 2023
  • Ingår i: Biophysical Journal. - 0006-3495 .- 1542-0086. ; 122:12, s. 2556-2563
  • Tidskriftsartikel (refereegranskat)abstract
    • Addition of amyloid seeds to aggregation-prone monomers allows for amyloid fiber growth (elongation) omitting slow nucleation. We here combine Thioflavin T fluorescence (probing formation of amyloids) and solution-state NMR spectroscopy (probing disappearance of monomers) to assess elongation kinetics of the amyloidogenic protein, α-synuclein, for which aggregation is linked to Parkinson's disease. We found that both spectroscopic detection methods give similar kinetic results, which can be fitted by applying double exponential decay functions. When the origin of the two-phase behavior was analyzed by mathematical modeling, parallel paths as well as stop-and-go behavior were excluded as possible explanations. Instead, supported by previous theory, the experimental elongation data reveal distinct kinetic regimes that depend on instantaneous monomer concentration. At low monomer concentrations (toward end of experiments), amyloid growth is limited by conformational changes resulting in β-strand alignments. At the higher monomer concentrations (initial time points of experiments), growth occurs rapidly by incorporating monomers that have not successfully completed the conformational search. The presence of a fast disordered elongation regime at high monomer concentrations agrees with coarse-grained simulations and theory but has not been detected experimentally before. Our results may be related to the wide range of amyloid folds observed.
  •  
3.
  •  
4.
  • Klepsch, Mirjam, 1983-, et al. (författare)
  • Escherichia coli Peptide Binding Protein OppA Has a Preference for Positively Charged Peptides
  • 2011
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 414:1, s. 75-85
  • Tidskriftsartikel (refereegranskat)abstract
    • The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity. Here, we studied peptide binding to E. coli OppA directly and show that the protein has an unexpected preference for basic peptides. OppA was expressed in the periplasm, where it bound to available peptides. The protein was purified in complex with tightly bound peptides. The crystal structure (up to 2.0 angstrom) of OppA liganded with the peptides indicated that the protein has a preference for peptides containing a lysine. Mass spectrometry analysis of the bound peptides showed that peptides between two and five amino acids long bind to the protein and indeed hinted at a preference for positively charged peptides. The preference of OppA for peptides with basic residues, in particular lysines, was corroborated by binding studies with peptides of defined sequence using isothermal titration calorimetry and intrinsic protein fluorescence titration. The protein bound tripeptides and tetrapeptides containing positively charged residues with high affinity, whereas related peptides without lysines/arginines were bound with low affinity. A structure of OppA in an open conformation in the absence of ligands was also determined to 2.0 angstrom, revealing that the initial binding site displays a negative surface charge, consistent with the observed preference for positively charged peptides. Taken together, E. coli OppA appears to have a preference for basic peptides.
  •  
5.
  •  
6.
  • Köhn, Birgit, et al. (författare)
  • A Luminal Loop of Wilson Disease Protein Binds Copper and Is Required for Protein Activity
  • 2018
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 115:6, s. 1007-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • The copper-transporting ATPase ATP7B is essential for loading of copper ions to copper-dependent enzymes in the secretory pathway; its inactivation results in Wilson disease. In contrast to copper-ion uptake by the cytoplasmic domains, ATP7B-mediated copper-ion release in the Golgi has not been explored yet. We demonstrate here that a luminal loop in ATP7B, rich in histidine/methionine residues, binds reduced copper (Cu(I)) ions, and identified copper-binding residues play an essential role in ATP7B-mediated metal ion release. NMR experiments on short-peptide models demonstrate that three methionine and two histidine residues are specifically involved in Cu(I) ion binding; with these residues replaced by alanines, no Cu(I) ion interaction is detected. Although more than one Cu(I) ion can interact with the wild-type peptide, removing either all histidine or all methionine residues reduces the stoichiometry to one Cu(I) ion binding per peptide. Using a yeast complementation assay, we show that for efficient copper transport by full-length ATP7B, the complete set of histidine and methionine residues in the lumen loop are required. The replacement of histidine/methionine residues by alanines does not perturb overall ATP7B structure, as the localization of ATP7B variants in yeast cells matches that of the wild-type protein. Thus, in similarity to ATP7A, ATP7B also appears to have a luminal “exit” copper ion site.
  •  
7.
  • Köhn, Birgit, et al. (författare)
  • Impact of crowded environments on binding between protein and single-stranded DNA
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept of Molecular Crowding depicts the high density of diverse molecules present in the cellular interior. Here, we determine the impact of low molecular weight and larger molecules on binding capacity of single-stranded DNA (ssDNA) to the cold shock protein B (CspB). Whereas structural features of ssDNA-bound CspB are fully conserved in crowded environments as probed by high-resolution NMR spectroscopy, intrinsic fluorescence quenching experiments reveal subtle changes in equilibrium affinity. Kinetic stopped-flow data showed that DNA-to-protein association is significantly retarded independent of choice of the molecule that is added to the solution, but dissociation depends in a nontrivial way on its size and chemical characteristics. Thus, for this DNA–protein interaction, excluded volume effect does not play the dominant role but instead observed effects are dictated by the chemical properties of the crowder. We propose that surrounding molecules are capable of specific modification of the protein’s hydration shell via soft interactions that, in turn, tune protein–ligand binding dynamics and affinity.
  •  
8.
  • Löw, Christian, et al. (författare)
  • Structural basis for PTPA interaction with the invariant C-terminal tail of PP2A
  • 2014
  • Ingår i: Biological chemistry (Print). - : Walter de Gruyter. - 1431-6730 .- 1437-4315. ; 395:7-8, s. 881-889
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein phosphatase 2A (PP2A) is a highly abundant heterotrimeric Ser/Thr phosphatase involved in the regulation of a variety of signaling pathways. The PP2A phosphatase activator (PTPA) is an ATP-dependent activation chaperone, which plays a key role in the biogenesis of active PP2A. The C-terminal tail of the catalytic subunit of PP2A is highly conserved and can undergo a number of posttranslational modifications that serve to regulate the function of PP2A. Here we have studied structurally the interaction of PTPA with the conserved C-terminal tail of the catalytic subunit carrying different posttranslational modifications. We have identified an additional interaction site for the invariant C-terminal tail of the catalytic subunit on PTPA, which can be modulated via posttranslational modifications. We show that phosphorylation of Tyr307(PP2A-C) or carboxymethylation of Leu309(PP2A-C) abrogates or diminishes binding of the C-terminal tail, whereas phosphorylation of Thr304(PP2A-C) is of no consequence. We suggest that the invariant C-terminal residues of the catalytic subunit can act as affinity enhancer for different PP2A interaction partners, including PTPA, and a different code of posttranslational modifications can favour interactions to one subunit over others.
  •  
9.
  • Zegarra, Fabio C., et al. (författare)
  • Crowding-Induced Elongated Conformation of Urea-Unfolded Apoazurin: Investigating the Role of Crowder Shape in Silico
  • 2019
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 123:17, s. 3607-3617
  • Tidskriftsartikel (refereegranskat)abstract
    • American Chemical Society. Here, we show by solution nuclear magnetic resonance measurements that the urea-unfolded protein apoazurin becomes elongated when the synthetic crowding agent dextran 20 is present, in contrast to the prediction from the macromolecular crowding effect based on the argument of volume exclusion. To explore the complex interactions beyond volume exclusion, we employed coarse-grained molecular dynamics simulations to explore the conformational ensemble of apoazurin in a box of monodisperse crowders under strong chemically denaturing conditions. The elongated conformation of unfolded apoazurin appears to result from the interplay of the effective attraction between the protein and crowders and the shape of the crowders. With a volume-conserving crowder model, we show that the crowder shape provides an anisotropic direction of the depletion force, in which a bundle of surrounding rodlike crowders stabilize an elongated conformation of unfolded apoazurin in the presence of effective attraction between the protein and crowders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy