SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kråkström Matilda) "

Sökning: WFRF:(Kråkström Matilda)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kråkström, Matilda, et al. (författare)
  • Dynamics of the Lipidome in a Colon Simulator
  • 2023
  • Ingår i: Metabolites. - : MDPI. - 2218-1989 .- 2218-1989. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Current evidence suggests that gut microbiome-derived lipids play a crucial role in the regulation of host lipid metabolism. However, not much is known about the dynamics of gut microbial lipids within the distinct gut biogeographic. Here we applied targeted and untargeted lipidomics to in vitro-derived feces. Simulated intestinal chyme was collected from in vitro gut vessels (V1-V4), representing proximal to distal parts of the colon after 24 and 48 h with/without polydextrose treatment. In total, 44 simulated chyme samples were collected from the in vitro colon simulator. Factor analysis showed that vessel and time had the strongest impact on the simulated intestinal chyme lipid profiles. We found that levels of phosphatidylcholines, sphingomyelins, triacylglycerols, and endocannabinoids were altered in at least one vessel (V1-V4) during simulation. We also found that concentrations of triacylglycerols, diacylglycerols, and endocannabinoids changed with time (24 vs. 48 h of simulation). Together, we found that the simulated intestinal chyme revealed a wide range of lipids that remained altered in different compartments of the human colon model over time.
  •  
2.
  • Lamichhane, Santosh, et al. (författare)
  • Circulating metabolic signatures of rapid and slow progression to type 1 diabetes in islet autoantibody-positive children
  • 2023
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media S.A.. - 1664-2392. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Appearance of multiple islet cell autoantibodies in early life is indicative of future progression to overt type 1 diabetes, however, at varying rates. Here, we aimed to study whether distinct metabolic patterns could be identified in rapid progressors (RP, disease manifestation within 18 months after the initial seroconversion to autoantibody positivity) vs. slow progressors (SP, disease manifestation at 60 months or later from the appearance of the first autoantibody).METHODS: Longitudinal samples were collected from RP (n=25) and SP (n=41) groups at the ages of 3, 6, 12, 18, 24, or ≥ 36 months. We performed a comprehensive metabolomics study, analyzing both polar metabolites and lipids. The sample series included a total of 239 samples for lipidomics and 213 for polar metabolites.RESULTS: We observed that metabolites mediated by gut microbiome, such as those involved in tryptophan metabolism, were the main discriminators between RP and SP. The study identified specific circulating molecules and pathways, including amino acid (threonine), sugar derivatives (hexose), and quinic acid that may define rapid vs. slow progression to type 1 diabetes. However, the circulating lipidome did not appear to play a major role in differentiating between RP and SP.CONCLUSION/INTERPRETATION: Our study suggests that a distinct metabolic profile is linked with the type 1 diabetes progression. The identification of specific metabolites and pathways that differentiate RP from SP may have implications for early intervention strategies to delay the development of type 1 diabetes.
  •  
3.
  • Saeid, Soudabeh, et al. (författare)
  • Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution : Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process
  • 2020
  • Ingår i: Catalysts. - : MDPI. - 2073-4344. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbamazepine (CBZ), a widely used pharmaceutical compound, is one of the most detected drugs in surface waters. The purpose of this work was to identify an active and durable catalyst, which, in combination with an ozonation process, could be used to remove CBZ and its degradation products. It was found that the CBZ was completely transformed after ozonation within the first minutes of the treatment. However, the resulting degradation products, 1-(2-benzaldehyde)-4-hydro-(1H,3H)-quinazoline-2-one (BQM) and 1-(2-benzaldehyde)-(1H,3H)-quinazoline-2,4-dione (BQD), were more resistant during the ozonation process. The formation and degradation of these products were studied in more detail and a thorough catalytic screening was conducted to reveal the reaction kinetics of both the CBZ and its degradation products. The work was performed by non-catalytic ozonation and with six different heterogeneous catalysts (Pt-MCM-41-IS, Ru-MCM-41-IS, Pd-H-Y-12-EIM, Pt-H-Y-12-EIM, Pd-H-Beta-300-EIM and Cu-MCM-41-A-EIM) operating at two temperatures 20 °C and 50 °C. The influence of temperature on degradation kinetics of CBZ, BQM and BQD was studied. The results exhibited a notable difference in the catalytic behavior by varying temperature. The higher reactor temperature (50 °C) showed a higher activity of the catalysts but a lower concentration of dissolved ozone. Most of the catalysts exhibited higher removal rate for BQM and BQD compared to non-catalytic experiments in both temperatures. The Pd-H-Y-12-EIM catalyst illustrated a higher degradation rate of by-products at 50 °C compared to other catalysts.
  •  
4.
  • Saeid, Soudabeh, et al. (författare)
  • Pt Modified Heterogeneous Catalysts Combined with Ozonation for the Removal of Diclofenac from Aqueous Solutions and the Fate of by-Products
  • 2020
  • Ingår i: Catalysts. - : MDPI. - 2073-4344. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The degradation of the pharmaceutical compound diclofenac in an aqueous solution was studied with an advanced oxidation method, catalytic ozonation. Diclofenac was destroyed in a few minutes by ozonation but several long-lasting degradation by-products were formed. For this reason, the combination of heterogeneous catalysts and ozonation was applied to eliminate them completely. The kinetics of the diclofenac degradation and the formation of by-products were thoroughly investigated. Loading of Pt on the catalysts resulted in an improvement of the activity. The Mesoporous Molecular Sieves (MCM) were one of the promising catalysts for the degradation of organic pollutants. In this study, six heterogeneous catalysts were screened, primarily MCM-22-100 catalysts with different Pt concentrations loaded via the evaporation-impregnation (EIM) method, and they were applied on the degradation of diclofenac. It was found that the presence of Pt improved the degradation of diclofenac and gave lower concentrations of by-products. The 2 wt % Pt-H-MCM-22-100-EIM demonstrated the highest degradation rate compared to the proton form, 1% or 5 wt % Pt concentration, i.e., an optimum was found in between. Pt-H-Y-12-IE and Pt-γ-Al2O3 (UOP)-IMP catalysts were applied and compared with the MCM-22 structure. Upon use of both of these catalysts, an improvement in the degradation of diclofenac and by-products was observed, and the 2 wt % Pt-H-MCM-22-100-EIM illustrated the maximum activity. All important characterization methods were applied to understand the behavior of the catalysts (X-ray powder diffraction, transmission electron microscopy, nitrogen physisorption, scanning electron microscopy, energy dispersive X-ray micro-analyses, pyridine adsorption-desorption with FTIR spectroscopy, X-ray photoelectron spectroscopy). Finally, leaching of Pt and Al were analyzed by inductively coupled optical emission spectrometry.
  •  
5.
  • Saeid, Soudabeh, et al. (författare)
  • Synthesis and Characterization of Metal Modified Catalysts for Decomposition of Ibuprofen from Aqueous Solutions
  • 2020
  • Ingår i: Catalysts. - : MDPI. - 2073-4344. ; 10:7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The presence of pharmaceuticals in surface water, drinking water, and wastewater has attracted significant concern because of the non-biodegradability, resistance, and toxicity of pharmaceutical compounds. The catalytic ozonation of an anti-inflammatory pharmaceutical, ibuprofen was investigated in this work. The reaction mixture was analyzed and measured by high-performance liquid chromatography (HPLC). Liquid chromatography-mass spectrometry (LC-MS) was used for the quantification of by-products during the catalytic ozonation process. Ibuprofen was degraded by ozonation under optimized conditions within 1 h. However, some intermediate oxidation products were detected during the ibuprofen ozonation process that were more resistant than the parent compound. To optimize the process, nine heterogeneous catalysts were synthesized using different preparation methods and used with ozone to degrade the ibuprofen dissolved in aqueous solution. The aim of using several catalysts was to reveal the effect of various catalyst preparation methods on the degradation of ibuprofen as well as the formation and elimination of by-products. Furthermore, the goal was to reveal the influence of various support structures and different metals such as Pd-, Fe-, Ni-, metal particle size, and metal dispersion in ozone degradation. Most of the catalysts improved the elimination kinetics of the by-products. Among these catalysts, Cu-H-Beta-150-DP synthesized by the deposition–precipitation process showed the highest decomposition rate. The regenerated Cu-H-Beta-150-DP catalyst preserved the catalytic activity to that of the fresh catalyst. The catalyst characterization methods applied in this work included nitrogen adsorption–desorption, scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The large pore volume and small metal particle size contributed to the improved catalytic activity.
  •  
6.
  • Thomas, Ilias, 1987-, et al. (författare)
  • Serum metabolome associated with severity of acute traumatic brain injury
  • 2022
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex metabolic disruption is a crucial aspect of the pathophysiology of traumatic brain injury (TBI). Associations between this and systemic metabolism and their potential prognostic value are poorly understood. Here, we aimed to describe the serum metabolome (including lipidome) associated with acute TBI within 24 h post-injury, and its relationship to severity of injury and patient outcome. We performed a comprehensive metabolomics study in a cohort of 716 patients with TBI and non-TBI reference patients (orthopedic, internal medicine, and other neurological patients) from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) cohort. We identified panels of metabolites specifically associated with TBI severity and patient outcomes. Choline phospholipids (lysophosphatidylcholines, ether phosphatidylcholines and sphingomyelins) were inversely associated with TBI severity and were among the strongest predictors of TBI patient outcomes, which was further confirmed in a separate validation dataset of 558 patients. The observed metabolic patterns may reflect different pathophysiological mechanisms, including protective changes of systemic lipid metabolism aiming to maintain lipid homeostasis in the brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy