SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kralj Iglic Veronika) "

Sökning: WFRF:(Kralj Iglic Veronika)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Drab, Mitja, et al. (författare)
  • Chapter Six - The role of membrane vesiculation and encapsulation in cancer diagnosis and therapy
  • 2019
  • Ingår i: Advances in Biomembranes and Lipid Self-Assembly. - : Elsevier. - 2451-9634. ; 29, s. 159-199
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize recent findings and advances in cancer diagnostics in relation to extracellular vesicles (EVs) and emerging therapeutic options of nanomaterials. We revise the common mechanism for EV inception, vesiculation, through a physical model of the liquid mosaic membrane with laterally mobile membrane rafts that determine local spontaneous curvature. If such in-plane orientational ordering is present, we show that spatial non-homogeneities may trigger energetically favourable membrane vesiculation. In addition, we revise a novel technique of cancer therapy using multifunctional titanium nanobeads (NBs) that form a fully biocompatible system used for optical imaging, magnetic resonance imaging and selective reactive oxygen species photo-generation. We study the encapsulation of these functional NBs theoretically with Monte Carlo (MC) simulations and find that the wrapping transition depends on the strength of mobile charges, giving insight into future functional optimization for maximum therapeutic benefit.
  •  
2.
  • Imani, Roghayeh, et al. (författare)
  • Biocompatibility of different nanostructured TiO2 scaffolds and their potential for urologic applications
  • 2016
  • Ingår i: Protoplasma. - : Springer Science and Business Media LLC. - 0033-183X .- 1615-6102. ; 253:6, s. 1439-1447
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite great efforts in tissue engineering of the ureter, urinary bladder, and urethra, further research is needed in order to improve the patient's quality of life and minimize the economic burden of different lower urinary tract disorders. The nanostructured titanium dioxide (TiO2) scaffolds have a wide range of clinical applications and are already widely used in orthopedic or dental medicine. The current study was conducted to synthesize TiO2 nanotubes by the anodization method and TiO2 nanowires and nanospheres by the chemical vapor deposition method. These scaffolds were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. In order to test the urologic applicability of generated TiO2 scaffolds, we seeded the normal porcine urothelial (NPU) cells on TiO2 nanotubes, TiO2 nanowires, TiO2 nanospheres, and on the standard porous membrane. The viability and growth of the cells were monitored everyday, and after 3 weeks of culturing, the analysis with scanning electron microscope (SEM) was performed. Our results showed that the NPU cells were attached on all scaffolds; they were viable and formed a multilayered epithelium, i.e., urothelium. The apical plasma membrane of the majority of superficial NPU cells, grown on all three different TiO2 scaffolds and on the porous membrane, exhibited microvilli; thus, indicating that they were at a similar differentiation stage. The maximal caliper diameter measurements of superficial NPU cells revealed significant alterations, with the largest cells being observed on nanowires and the smallest ones on the porous membrane. Our findings indicate that different nanostructured TiO2 scaffolds, especially nanowires, have a great potential for tissue engineering and should be further investigated for various urologic applications.
  •  
3.
  • Imani, Roghayeh, et al. (författare)
  • Multifunctional Gadolinium-Doped Mesoporous TiO2 Nanobeads : Photoluminescence, Enhanced Spin Relaxation, and Reactive Oxygen Species Photogeneration, Beneficial for Cancer Diagnosis and Treatment
  • 2017
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 13:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2, and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via center dot OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO2@xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.
  •  
4.
  • Yáñez-Mó, María, et al. (författare)
  • Biological properties of extracellular vesicles and their physiological functions.
  • 2015
  • Ingår i: Journal of extracellular vesicles. - : Wiley. - 2001-3078. ; 4
  • Forskningsöversikt (refereegranskat)abstract
    • In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy