SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kram P) "

Sökning: WFRF:(Kram P)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Leclere, David, et al. (författare)
  • Bending the curve of terrestrial biodiversity needs an integrated strategy
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 585:7826, s. 551-556
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides(1,2). Ambitious targets have been proposed, such as reversing the declining trends in biodiversity(3); however, just feeding the growing human population will make this a challenge(4). Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity(5). We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy. To promote the recovery of the currently declining global trends in terrestrial biodiversity, increases in both the extent of land under conservation management and the sustainability of the global food system from farm to fork are required.
  •  
4.
  •  
5.
  •  
6.
  • Rosenstock, Nicholas P., et al. (författare)
  • The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests
  • 2016
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 211:2, s. 542-553
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated fungal growth and community composition in buried meshbags, amended with apatite, biotite or hornblende, in Norway spruce (Picea abies) forests of varying nutrient status. Norway spruce needles and soil collected from forests overlying serpentinite had low levels of potassium and phosphorus, those from granite had low levels of magnesium, whereas those from amphibolite had comparably high levels of these nutrients. We assayed the fungal colonization of meshbags by measuring ergosterol content and fungal community with 454 sequencing of the internal transcribed spacer region. In addition, we measured fine root density. Fungal biomass was increased by apatite amendment across all plots and particularly on the K-and P-deficient serpentinite plots, whereas hornblende and biotite had no effect on fungal biomass on any plots. Fungal community (total fungal and ectomycorrhizal) composition was affected strongly by sampling location and soil depth, whereas mineral amendments had no effect on community composition. Fine root biomass was significantly correlated with fungal biomass. Ectomycorrhizal communities may respond to increased host-tree phosphorus demand by increased colonization of phosphorus-containing minerals, but this does not appear to translate to a shift in ectomycorrhizal community composition. This growth response to nutrient demand does not appear to exist for potassium or magnesium limitation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy