SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krasnov Vladimir Professor) "

Sökning: WFRF:(Krasnov Vladimir Professor)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Andrés Prada, Roberto, 1990- (författare)
  • Pulsed laser deposition and nanofabrication of mesoscopic devices based on cuprates and manganites
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis explores the growth, the nano-fabrication and the study of the magneto-transport properties of Superconductor/Ferromagnet/Superconductor (SFS) structures from complex oxides such as the high Tc superconducting cuprate YBa2Cu3O7 (YBCO) and the ferromagnetic manganites La2/3Ca1/3MnO3 and La2/3Sr1/3MnO3 (LCMO and LSMO), deposited with the pulsed laser deposition (PLD) technique.The present work has been possible thanks to the collaboration between the “Magnetism and Superconductivity” Group at the University of Fribourg, in Switzerland, and the “Experimentell Kondenserade Materiens Fysik” Group at Stockholm University, in Sweden.Earlier, the two research groups in Fribourg and Stockholm had studied SFS structures from YBCO/LaMnO3/YBCO multilayers with 20 nm thick ferromagnetic and insulating LaMnO3 barriers, and obtained signs of an unconventional spin-triplet current across these structures. This finding motivated the present thesis work with a focus on two main aspects.Firstly, to explore other candidate materials suitable as barriers and optimise their growth conditions as to maintain a large ferromagnetic moment and thus a high spin polarisation of the charge carriers. Secondly, to study what happens when the thickness of the ferromagnetic and insulating LaMnO3 barrier is reduced well below 20 nm to enable larger supercurrents.It has been shown for a series of YBCO/LCMO multilayers that the ferromagnetic moment of LCMO depends critically on the PLD growth conditions as well as on the thickness and even structural details of the YBCO layer on which they are grown. Furthermore, a protocol has been established to grow heterostructures with strongly ferromagnetic manganite layers embedded in thick YBCO layers by optimising the PLD growth conditions and by substituting the bottom YBCO layer with a Co and Ca substituted version of YBCO that has a tetragonal structure (tYBCO) instead of the orthorhombic one of plain YBCO.Devices suitable for perpendicular magneto-transport measurements have been nano-fabricated from YBCO/manganite/YBCO multilayers with ~10 nm thick LCMO and LSMO layers as the F barriers. While no clear indications of a spin-triplet component of the superconducting order parameter have been obtained yet, a negative and hysteretic magneto-resistance has been observed that is indicative of a strong ferromagnetic order in the thin manganite barrier. The latter suggests a potential memory functionality of such structures that could be exploited in future spintronic memory devices.Moreover, devices have been fabricated on SFS structures with a reduced thickness of the LaMnO3 barrier of 10 nm and 5 nm. These samples were grown prior to the beginning of this PhD work using non optimised growth conditions, and it was found that the ferromagnetic properties of these LaMnO3 barriers are strongly deteriorated. It remains to be seen whether the ferromagnetic order of such thin LaMnO3 layers can be also recovered by using the optimised growth conditions as for LSMO and LCMO.
  •  
2.
  • Andersson, Andreas, 1982- (författare)
  • Simulations of thermoelectric transport in granularsuperconductors
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents results from numerical simulations of the Nernst effect dueto phase fluctuations in models of two-dimensional granular superconductors. Inaddition other transport properties, such as thermal conductivity and electrical re-sistivity are calculated. The models are based on a phase only description withLangevin or resistively and capacitively shunted Josephson junction (RCSJ) dy-namics, generalized to be valid for any type of two-dimensional lattice structure.All transport coefficients are evaluated from equilibrium correlation functions usingKubo formulas. In Paper I, anomalous sign reversals of the Nernst signal eN , corresponding tovortex motion from colder to hotter regions, are observed. These are attributedto geometric frustration effects close to magnetic fields commensurate with theunderlying lattice structure. The effect is seen also in systems with moderategeometric disorder, and should thus be possible to observe in real two-dimensionalgranular superconductors or Josephson junction arrays. Paper II presents two different derivations of an expression for the heat current inLangevin and RCSJ dynamics. The resulting expression is through our simulationsseen to obey the required Onsager relation, as well as giving consistent resultswhen calculating κ and eN via Kubo formulas and through the responses to anapplied temperature gradient. In zero magnetic field and at low-temperatures, thecontribution to the thermal conductivity κ in RCSJ dynamics is calculated usinga spin-wave approximation, and is shown to be independent of temperature anddiverge logarithmically with system size. At higher temperatures, κ shows a non-monotonic temperature dependence. In zero magnetic field κ has a anomalouslogarithmic size dependence also in this regime. The off-diagonal component ofthe thermoelectric tensor αxy is calculated and displays the very same ∼1/T dependence at low temperatures predicted from calculations based on Gaussiansuperconducting fluctuations.
  •  
3.
  • Carlström, Johan, 1981- (författare)
  • Vortex-matter in Multi-component Superconductors
  • 2012
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The topic of this thesis is vortex-physics in multi component Ginzburg- Landau models. These models describe a newly discovered class of supercon- ductors with multiple superconducting gaps, and posses many properties that set them apart from single component models. The work presented here relies on large scale computer simulations using various numerical techniques, but also some analytical methods.In Paper I, Type-1.5 Superconducting State from an Intrinsic Proximity Effect in Two-Band Superconductors, we show that in multiband supercon- ductors, even an extremely small interband proximity effect can lead to a qualitative change in the interaction potential between superconducting vor- tices by producing long-range intervortex attraction. This type of vortex interaction results in an unusual response to low magnetic fields, leading to phase separation into domains of two-component Meissner states and vortex droplets.In paper II, Type-1.5 superconductivity in multiband systems: Effects of interband couplings, we investigate the appearance of Type-1.5 superconduc- tivity in the case with two active bands and substantial inter-band couplings. such as intrinsic Josephson coupling, mixed gradient coupling, and density- density interactions. We show that in the presence of these interactions, the system supports type-1.5 superconductivity with fundamental length scales being associated with the mass of the gauge field and two masses of normal modes represented by mixed combinations of the density fields.In paper III, Semi-Meissner state and nonpairwise intervortex interactions in type-1.5 superconductors, we demonstrate the existence of nonpairwise in- teraction forces between vortices in multicomponent and layered supercon- ducting systems. Next, we consider the properties of vortex clusters in a semi-Meissner state of type-1.5 two-component superconductors. We show that under certain conditions nonpairwise forces can contribute to the forma- tion of very complex vortex states in type-1.5 regimes.In paper IV, Length scales, collective modes, and type-1.5 regimes in three- band superconductors, we consider systems where frustration in phase differ- ences occur due to competing Josephson inter-band coupling terms. We show that gradients of densities and phase differences can be inextricably inter- twined in vortex excitations in three-band models. This can lead to very long-range attractive intervortex interactions and the appearance of type-1.5 regimes even when the intercomponent Josephson coupling is large. We also show that field-induced vortices can lead to a change of broken symmetry from U (1) to U (1) × Z2 in the system. In the type-1.5 regime, it results in a semi-Meissner state where the system has a macroscopic phase separation in domainswithbrokenU(1)andU(1)×Z2 symmetries.In paper V, Topological Solitons in Three-Band Superconductors with Bro- ken Time Reversal Symmetry, we show that three-band superconductors with broken time reversal symmetry allow magnetic flux- carrying stable topolog- ical solitons. They can be induced by fluctuations or quenching the system through a phase transition. It can provide an experimental signature of the time reversal symmetry breakdown. 
  •  
4.
  • Golod, Taras, 1981- (författare)
  • Mesoscopic phenomena in hybrid superconductor/ferromagnet structures
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis explores peculiar effects of mesoscopic structures revealed at low temperatures. Three particular systems are studied experimentally: Ferromagnetic thin films made of diluted Pt1-xNix alloy, hybrid nanoscale Nb-Pt1-xNix-Nb Josephson junctions, and planar niobium Josephson junction with barrier layer made of Cu or Cu0.47Ni0.53 alloy. A cost-effective way is applied to fabricate the sputtered NixPt1-x thin films with controllable Ni concentration. 3D Focused Ion Beam (FIB) sculpturing is used to fabricate Nb-Pt1-xNix-Nb Josephson junctions. The planar junctions are made by cutting Cu-Nb or CuNi-Nb double layer by FIB. Magnetic properties of PtNi thin films are studied via the Hall effect. It is found that films with sub-critical Ni concentration are superparamagnetic at low temperatures and exhibit perpendicular magnetic anisotropy. Films with over-critical Ni concentration are ferromagnetic with parallel anisotropy. At the critical concentration the films demonstrate canted magnetization with the easy axis rotating as a function of temperature. The magnetism appears via two consecutive crossovers, going from paramagnetic to superparamagnetic to ferromagnetic, and the extraordinary Hall effect changes sign at low temperatures. Detailed studies of superconductor-ferromagnet-superconductor Josephson junctions are carried out depending on the size of junction, thickness and composition of the ferromagnetic layer. The junction critical current density decreases non-monotonically with increasing Ni concentration. It has a minimum at ~ 40 at.% of Ni which indicates a switching into the π state. The fabricated junctions are used as phase sensitive detectors for analysis of vortex states in mesoscopic superconductors. It is found that the vortex induces different flux shifts, in the measured Fraunhofer modulation of the Josephson critical current, depending on the position of the vortex. When the vortex is close to the junction it induces a flux shift equal to Φ0/2 leading to switching of the junction into the 0-π state. By changing the bias current at constant magnetic field the vortices can be manipulated and the system can be switched between two consecutive vortex states. A mesoscopic superconductor can thus act as a memory cell in which the junction is used both for reading and writing information (vortex).
  •  
5.
  • Katterwe, Sven-Olof, 1977- (författare)
  • Properties of small Bi2Sr2CaCu2O8 intrinsic Josephson junctions: confinement, flux-flow and resonant phenomena
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, intrinsic Josephson junctions, naturally formed in the strongly anisotropic high-temperature superconductor Bi2Sr2CaCu2O8 (Bi-2212), are studied experimentally. For this purpose, small mesa structures are fabricated on the surface of single crystals using micro- and nano-fabrication tools, focused ion beam is used to reduce the area of the mesa-structures down to ≈ 1 × 1 μm2. The properties of charge transport across copper-oxide layers inside the mesas are studied by intrinsic tunneling spectroscopy. Temperature, bias and magnetic field dependences of current-voltage characteristics are examined. In the main part of the thesis, the behavior of intrinsic Josephson junctions in magnetic fields B parallel to the copper-oxide planes is studied. Parallel magnetic fields penetrate the junctions in the form of Josephson vortices (fluxons). At high magnetic fields, fluxons are arranged in a regular lattice and are accelerated by a sufficient high transport current. As the fluxon lattice is moving through the mesa, it emits electromagnetic waves in the important THz frequency range. Properties of Bi-2212 mesas in this flux-flow regime are studied in this thesis. The following new observations were made during the course of this work: a crossover from thermal activation above Tc to quantum tunneling below Tc is seen in the interlayer transport-mechanism, the Fraunhofer pattern of Ic(B) is observed clearly in Bi-2212, superluminal electromagnetic cavity resonances and phonon-polaritons are observed in Bi-2212. It is argued that the employed technique for miniaturization of mesas and the obtained results can be useful for a better understanding of fundamental properties of high-temperature superconductors and for the realizations of coherent flux-flow oscillators and coherent phonon-polariton generators in the important THz frequency range.
  •  
6.
  • Borodianskyi, Ievgenii, 1991- (författare)
  • Superradiant THz wave emission from arrays of Josephson junctions
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • High-power, continuous-wave, compact and tunable THz sources are needed for a large variety of applications. Development of power-efficient sources of electromagnetic radiation in the 0.1-10 THz range is a difficult technological problem, known as the “THz gap.” Josephson junctions allow creation of monochromatic THz sources with an inherently broad range of tunability. However, emission power from a single junction is too small. It can be amplified in a coherent superradiant manner by phase-locking of many junctions. In this case, the emission power should increase as a square of the number of phase-locked junctions.The aim of this thesis is to study a possibility of achieving coherent super-radiant emission with significant power and frequency tunability from Joseph-son junction arrays. Two types of devices are studied, based either on stacks (one-dimensional arrays) of intrinsic Josephson junctions naturally formed in single crystals of high-temperature cuprate superconductor Bi2Sr2CaCu2O8+x, or two-dimensional arrays of artificial low-temperature superconducting Nb/NbSi/Nb junctions. Micron-size junctions are fabricated using micro- and nanofabrication tools.The first chapter of this thesis describes the theory of Josephson junctions and how mutual coupling between Josephson junctions can lead to self-syn-chronization, facilitating the superradiant emission of electromagnetic radia-tion. The second chapter is focused on the technical aspects of this work, with detailed descriptions of sample fabrication and experimental techniques. The third chapter presents main results and discussion. It is demonstrated that de-vices based on high-Tc cuprates allow tunable emission in a very broad fre-quency range 1-11 THz. For low- Tc junction arrays synchronization of up to 9000 junctions is successfully achieved. It is argued that an unconventional traveling-waves mechanism facilitates the phase-locking of such huge arrays. The obtained results confirm a possibility of creation of high-power, continu-ous-wave, compact and tunable THz sources, based on arrays of Josephson junctions.
  •  
7.
  • Jacobs, Thorsten, 1982- (författare)
  • Unraveling the cuprate superconductor phase diagram : Intrinsic tunneling spectroscopy and electrical doping
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • High-temperature superconductors belong to the group of strongly correlated materials. In these compounds, complex repulsive electron interactions and a large number of degrees of freedom lead to a rich variety of states of matter. Exotic phases like the pseudogap, charge-, spin- and pair-density waves, but also the remarkable phenomenon of superconductivity emerge, depending on doping level and temperature. However, up to now it is unclear what exactly causes these states, to what extent they are coexisting or competing, and where their borders in the phase diagram lie. A better understanding could help in finding the mechanism behind high-temperature superconductivity, but would also provide a better insight into the puzzling behavior of strongly correlated materials.This thesis tries to resolve some of these questions with focus on the underdoped pseudogap regime. Mesa structures of bismuth-based cuprate superconductors were studied using intrinsic tunneling, which allows spectroscopic characterizations of electronic density of states inside the material. A micro/nano fabrication method was developed to further reduce mesa areas into the sub square-micrometer range, in order to minimize the effect of crystal defects and measurement artifacts caused by heating induced by the measurement current.The comparison of energy scales in Bi-2201 and Bi-2212 cuprates shows that the pseudogap phenomenon is not connected to superconductivity, but possibly represents a competing spin-singlet order that is universal to all cuprates. The analysis of the upper critical field in Bi-2201 reveals a low anisotropy, which gives evidence of paramagnetically limited superconductivity. Furthermore, a new electrical doping method is demonstrated, which enables the reversible tuning the doping level of Bi-2212 and study a broad doping range upon a single sample. Using this method, two distinct critical points were observed under the superconducting dome in the phase diagram: one at the overdoped side, associated with the onset of the pseudogap and a metal to insulator transition, and one at optimal doping, associated with an enhanced "dressed" electron energy. Finally, a novel angular-dependent magnetotunneling technique is introduced, which allows for the separation of the superconducting and non-superconducting contributions to the pseudogap phenomenon. The method reveals that after an abrupt decay of the energy gap for T→Tc, weak superconducting correlations persist up to several tens of degrees above Tc.
  •  
8.
  • Kapran, Olena, 1993- (författare)
  • Hybrid Superconductor/Ferromagnet junctions with a strongly ferromagnetic barrier
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The spin-triplet superconducting state, predicted in superconductor /ferromagnet heterostructures remains one of the most exotic states of nature. It is expected that the triplet state can be switched on/off by changing the relative orientation of magnetization in multilayer Josephson spin-valve structures. This is interesting not only from a fundamental point but could also lead to the creation of novel transistor-like devices with controlled supercurrent. However, there are many experimental challenges. The key issue is in achieving detailed knowledge and control of the micromagnetic state. This requires methods for in-situ characterization of actual nano-devices.In this thesis we study Superconductor/Ferromagnet/Superconductor (SFS) Josephson junctions with Nb superconducting electrodes and Ni interlayers with thicknesses 2-20 nm. Nano-scale SFS junctions are made by a 3D nanosculpturing technique by Focused Ion Beam. Small sizes are needed for achieving mono-domain remagnetization of Ni interlayer in the junctions. Ni is a strong ferromagnet with the exchange energy Eex ~ 631 K much larger than the superconducting critical temperature of Nb, Tc ≈9 K. Therefore, it might be expected that spin-singlet Cooper pairs should be rapidly destroyed in Ni. However, we observe a significant supercurrent through Ni with thicknesses up to 20 nm. We attribute this counterintuitive result to the cleanliness of Ni films with a mean-free-path ~100 nm larger than the film thickness. For determination of the micromagnetic state of F-layers in our nano-scale junctions we develop a new in-situ characterization technique based on a combination of the Absolute Josephson Fluxometry and the First-Order-Reversal-Curves analysis. It is demonstrated that this is a very powerful technique facilitating detailed in-situ measurements of magnetization curves of F-interlayers even in very small junctions. Finally, we fabricate and study nano-scale Nb/Ni/Nb junctions with planar geometry and argue that such junctions can be employed as sensitive scanning-probe sensors. Thus, we demonstrate that Ni, despite being a strong ferromagnet, is a promising material for application in superconducting spintronics.
  •  
9.
  • Motzkau, Holger, 1985- (författare)
  • High-frequency phenomena in small Bi2Sr2CaCu2O8+x intrinsic Josephson junctions
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, the tunneling between individual atomic layers in structures of Bi2Sr2CaCu2O8+x based high-temperature superconductors are experimentally studied employing the intrinsic Josephson effect. A special attention is paid to the fabrication of small mesa structures using micro and nanofabrication techniques.In the first part of the thesis, the periodic Fraunhofer-like modulation of the critical current of the junctions as a function of in-plane magnetic field is investigated. A transition from a modulation with a half flux quantum to a flux quantum periodicity is demonstrated with increasing field and decreasing junction length. It is interpreted in terms of the transformation of the static fluxon lattice of stacked, strongly coupled intrinsic Josephson junctions and compared with theoretical predictions. A fluxon phase diagram is constructed.Numerical simulations have been carried out to complement the experimental data.In the second part of the thesis, different resonant phenomena are studied in the dynamic flux-flow state at high magnetic fields, including Eck-resonances and Fiske steps. Different resonant modes and their velocities, including superluminal modes, are identified.In the third part, different experiments attempting to detect radiation from small mesa structures using different setups based on hot-electron bolometer mixers and calorimeters are described. No distinct radiation with emission powers higher than about 500pW could be detected. Furthermore, the interaction with external GHz-radiation is studied. Resonances attributed to an induced flux-flow are observed, and the reflectivity of the sample can be tuned by switching mesas between the superconducting and quasiparticle state.In the last part, the resistive switching of mesas at high bias is studied. It is attributed to a persistent electrical doping of the crystal. Superconducting properties such as the critical current and temperature and the tunneling spectra are analyzed at different doping states of the same sample. The dynamics of the doping is studied, and attributed to two mechanisms; a charge-transfer effect and oxygen reordering
  •  
10.
  • Tagliati, Stella, 1983- (författare)
  • Membrane-based nanocalorimetry for low temperature studies with high resolution and absolute accuracy
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A differential, membrane-based nanocalorimeter has been designed and constructed for thermal studies of mesoscopic samples at low temperatures. The calorimeter is intended for sample masses from mg to sub-μg and a broad temperature range from above room temperature down to the sub-K region. It allows concurrent use of ac steady state and relaxation methods. Effort was spent to achieve good absolute accuracy to enable investigations of the electronic contribution to the heat capacity of superconductors. The calorimeter consists of a pair of cells, each of which is a stack of heaters and thermometer in the center of a silicon nitride membrane, in total giving a background heat capacity less than 100 nJ/K at 300 K, decreasing to 10 pJ/K at 1 K. The device has several distinctive features: i) The resistive thermometer, made of a GeAu alloy, displays a high sensitivity, dlnR/dlnT ≈ −1 over the entire temperature range. ii) The sample is placed in direct contact with the thermometer, which is allowed to self-heat. The thermometer can thus be operated at high dc current to increase the resolution. iii) Data are acquired with a set of eight synchronized lock-in amplifiers measuring dc, 1st and 2nd harmonic signals of heaters and thermometer. iv) Absolute accuracy is achieved via a novel variable-frequency fixed-phase technique in which the measurement frequency is automatically adjusted during ac-calorimetry measurements to account for the temperature variation of the sample specific heat and the device thermal conductance. The properties of the empty cell and the effect of the thermal link between sample and cell were analytically studied. Practical expressions for describing the frequency dependence of heat capacity, thermal conductance, and temperature oscillation amplitude of the system were formulated. Comparisons with measurements and numerical simulations show excellent agreement. Calibration procedures are simple, but care should be taken to minimize thermal radiation effects. The experimental setup is operated with self-regulation of heater powers and thermometer bias, including compensation to zero the differential dc signal. As a result its high resolution and compact format, the calorimeter is well suited for studies of phase transitions and phase diagrams as well as electronic specific heat. The performance of the device is demonstrated by a study of the superconducting state of a small lead crystal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy