SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kratina Pavel) "

Sökning: WFRF:(Kratina Pavel)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cardoso Pereira, Cássio, et al. (författare)
  • Subtle structures with not-so-subtle functions : A data set of arthropod constructs and their host plants
  • 2022
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.
  •  
2.
  • Gilbert, Benjamin, et al. (författare)
  • A bioenergetic framework for the temperature dependence of trophic interactions
  • 2014
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 17:8, s. 902-914
  • Tidskriftsartikel (refereegranskat)abstract
    • Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We develop an energetic approach to identify the relationship between biomass fluxes and standing biomass across trophic levels. Our approach links ecological rates and trophic dynamics to measure temperature-dependent changes to the strength of trophic interactions and determine how these changes alter food web stability. It accomplishes this by using biomass as a common energetic currency and isolating three temperature-dependent processes that are common to all consumer-resource interactions: biomass accumulation of the resource, resource consumption and consumer mortality. Using this framework, we clarify when and how temperature alters consumer to resource biomass ratios, equilibrium resilience, consumer variability, extinction risk and transient vs. equilibrium dynamics. Finally, we characterise key asymmetries in species responses to temperature that produce these distinct dynamic behaviours and identify when they are likely to emerge. Overall, our framework provides a mechanistic and more unified understanding of the temperature dependence of trophic dynamics in terms of ecological rates, biomass ratios and stability.
  •  
3.
  • Ingram, Travis, et al. (författare)
  • Intraguild predation drives evolutionary niche shift in threespine stickleback
  • 2012
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 66:6, s. 1819-1832
  • Tidskriftsartikel (refereegranskat)abstract
    • Intraguild predation—competition and predation by the same antagonist—is widespread, but its evolutionary consequences are unknown. Intraguild prey may evolve antipredator defenses, superior competitive ability on shared resources, or the ability to use an alternative resource, any of which may alter the structure of the food web. We tested for evolutionary responses by threespine stickleback to a benthic intraguild predator, prickly sculpin. We used a comparative morphometric analysis to show that stickleback sympatric with sculpin are more armored and have more limnetic-like body shapes than allopatric stickleback. To test the ecological implications of this shift, we conducted a mesocosm experiment that varied sculpin presence and stickleback population of origin (from one sympatric and one allopatric lake). Predation by sculpin greatly increased the mortality of allopatric stickleback. In contrast, sculpin presence did not affect the mortality of sympatric stickleback, although they did have lower growth rates suggesting increased nonpredatory effects of sculpin. Consistent with their morphology, sympatric stickleback included more pelagic prey in their diets, leading to depletion of zooplankton in the mesocosms. These findings suggest that intraguild prey evolution has altered food web structure by reducing both predation by the intraguild predator and diet overlap between species
  •  
4.
  • Kratina, Pavel, et al. (författare)
  • Biotic invasions can alter nutritional composition of zooplankton communities
  • 2015
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 124:10, s. 1337-1345
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecologists and ecosystem managers often base their understanding of trophic dynamics on consumer and resource biomass. However, the factors that alter the relative nutritional value of resources are often poorly understood, despite their potential to decouple trophic interactions. Recent population declines in pelagic fishes of the upper San Francisco Estuary were not accompanied by an equivalent decrease in zooplankton biomass, which are the main resource for the fish and their larvae. It was hypothesized that changes in zooplankton nutritional conditions following the establishment of invasive species caused food-quality related limitations for these higher-order consumers. Using stable isotopes, elemental stoichiometry and fatty acid analyses for all dominant invasive and native zooplankton taxa and seston, we characterized the plankton community structure in the estuary and demonstrated taxon-specific differences in their nutritional value. We then quantified the temporal dynamics in meso-zooplankton proportions of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), polyunsaturated fatty acids (PUFA), and ratio of n3: n6 fatty acids. We found temporal increase in the community-level DHA, n3 to n6 fatty acid ratio, decrease in the community-level EPA and PUFA in the brackish water region, but no change in the bulk PUFA proportions in the freshwater region of the estuary. These changes were caused mainly by declines of native cladocerans that are rich in EPA and by an increase in the dominance of invasive taxa with high DHA concentrations, similar to that of native taxa. Although we showed temporal shifts in individual fatty acid classes, the proportion of the essential fatty acids remained relatively high, suggesting that nutritional prey availability for fish remained unchanged with the shift in species composition. We argue that the nutritional content of resource communities should be considered when analyzing the long-term trophic dynamics and designing effective management and restoration strategies.
  •  
5.
  • Kratina, Pavel, et al. (författare)
  • Human-induced biotic invasions and changes in plankton interaction networks
  • 2014
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 51:4, s. 1066-1074
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Pervasive and accelerating changes to ecosystems due to human activities remain major sources of uncertainty in predicting the structure and dynamics of ecological communities. Understanding which biotic interactions within natural multitrophic communities are weakened or augmented by invasions of non-native species in the context of other environmental pressures is needed for effective management. 2. We used multivariate autoregressive models with detailed time-series data from largely freshwater and brackish regions of the upper San Francisco Estuary to assess the topology, direction and strength of trophic interactions following major invasions and establishment of non-native zooplankton in the early 1990s. We simultaneously compared the effects of fish and clam predation, environmental temperature and salinity intrusion using time-series data from > 60 monitoring locations spanning more than three decades. 3. We found changes in the networks of biotic interactions in both regions after the major zooplankton invasions. Our results imply an increased pressure on native herbivores; intensified negative interactions between herbivores and omnivores; and stronger bottom-up influence of juvenile copepods but weaker influence of phytoplankton as a resource for higher trophic levels following the invasions. We identified salinity intrusion as a primary pressure but showed relatively stronger importance of biotic interactions for understanding the dynamics of entire communities. 4. Synthesis and applications. Our findings highlight the dynamic nature of biotic interactions and provide evidence of how simultaneous invasions of exotic species may alter interaction networks in diverse natural ecosystems over large spatial and temporal scales. Efforts to restore declining fish stocks may be in vain without fully considering the trophic dynamics that limit the flow of energy to target populations. Focusing on multitrophic interactions that may be threatened by invasions rather than a limited focus on responses of individual species or diversity is likely to yield more effective management strategies.
  •  
6.
  • Peralta-Maraver, Ignacio, et al. (författare)
  • The riverine bioreactor : An integrative perspective on biological decomposition of organic matter across riverine habitats
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 772
  • Forskningsöversikt (refereegranskat)abstract
    • Riverine ecosystems can be conceptualized as 'bioreactors' (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactors performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems.
  •  
7.
  • Romero, Gustavo Q., et al. (författare)
  • Climate variability and aridity modulate the role of leaf shelters for arthropods : A global experiment
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:11, s. 3694-3710
  • Tidskriftsartikel (refereegranskat)abstract
    • Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy