SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krause Rolf) "

Sökning: WFRF:(Krause Rolf)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Benedusi, Pietro, et al. (författare)
  • Fast Parallel Solver for the Space-time IgA-DG Discretization of the Diffusion Equation
  • 2021
  • Ingår i: Journal of Scientific Computing. - : Springer. - 0885-7474 .- 1573-7691. ; 89:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider the space-time discretization of the diffusion equation, using an isogeometric analysis (IgA) approximation in space and a discontinuous Galerkin (DG) approximation in time. Drawing inspiration from a former spectral analysis, we propose for the resulting space-time linear system a multigrid preconditioned GMRES method, which combines a preconditioned GMRES with a standard multigrid acting only in space. The performance of the proposed solver is illustrated through numerical experiments, which show its competitiveness in terms of iteration count, run-time and parallel scaling.
  •  
3.
  •  
4.
  •  
5.
  • Messina, Luca, 1986-, et al. (författare)
  • A DFT-driven multifidelity framework for constructing efficient energy models for atomic-scale simulations
  • 2020
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 483, s. 15-21
  • Tidskriftsartikel (refereegranskat)abstract
    • The reliability of atomistic simulations depends on the quality of the underlying energy models providing the source of physical information, for instance for the calculation of migration barriers in atomistic Kinetic Monte Carlo simulations. Accurate (high-fidelity) methods are often available, but since they are usually computationally expensive, they must be replaced by less accurate (low-fidelity) models that introduce some degrees of approximation. Machine-learning techniques such as artificial neural networks can be employed to work around this limitation and extract the needed parameters from large databases of high-fidelity data. However, the latter are often computationally expensive to produce. This work introduces an alternative method based on the multifidelity approach. Correlations between high-fidelity and low-fidelity predictions are exploited to make an educated guess of the high-fidelity value based only on quick low-fidelity estimations, to be used for instance as an efficient and reliable source of physical data for atomistic simulations. With respect to neural networks, this approach requires less training data because of the lower amount of fitting parameters involved. The method is tested on the prediction of ab initio formation and migration energies of vacancy diffusion in iron-copper alloys, and compared with the neural networks trained on the same database.
  •  
6.
  • Skripcak, Tomas, et al. (författare)
  • Creating a data exchange strategy for radiotherapy research : Towards federated databases and anonymised public datasets
  • 2014
  • Ingår i: Radiotherapy and Oncology. - : Elsevier BV. - 0167-8140 .- 1879-0887. ; 113:3, s. 303-309
  • Tidskriftsartikel (refereegranskat)abstract
    • Disconnected cancer research data management and lack of information exchange about planned and ongoing research are complicating the utilisation of internationally collected medical information for improving cancer patient care. Rapidly collecting/pooling data can accelerate 'translational research in radiation therapy and oncology. The exchange of study data is one of the fundamental principles behind data aggregation and data mining. The possibilities of reproducing the original study results, performing further analyses on existing research data to generate new hypotheses or developing computational models to support medical decisions (e.g. risk/benefit analysis of treatment options) represent just a fraction of the potential benefits of medical data-pooling. Distributed machine learning and knowledge exchange from federated databases can be considered as one beyond other attractive approaches for knowledge generation within "Big Data". Data interoperability between research institutions should be the major concern behind a wider collaboration. Information captured in electronic patient records (EPRs) and study case report forms (eCRFs), linked together with medical imaging and treatment planning data, are deemed to be fundamental elements for large multi-centre studies in the field of radiation therapy and oncology. To fully utilise the captured medical information, the study data have to be more than just an electronic version of a traditional (un-modifiable) paper CRF. Challenges that have to be addressed are data interoperability, utilisation of standards, data quality and privacy concerns, data ownership, rights to publish, data pooling architecture and storage. This paper discusses a framework for conceptual packages of ideas focused on a strategic development for international research data exchange in the field of radiation therapy and oncology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy