SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krauss Jochen) "

Sökning: WFRF:(Krauss Jochen)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
2.
  • Allan, Eric, et al. (författare)
  • Interannual variation in land-use intensity enhances grassland multidiversity
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:1, s. 308-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
  •  
3.
  • Hambäck, Peter, et al. (författare)
  • Allometric density responses in butterflies : the response to small and large patches by small and large species
  • 2010
  • Ingår i: Ecography. - : Blackwell. - 0906-7590 .- 1600-0587. ; 33:6, s. 1149-1156
  • Tidskriftsartikel (refereegranskat)abstract
    • Species are differentially affected by habitat fragmentation as a consequence of differences in mobility, area requirements, use of the matrix, and responses to edges. A quantitative understanding of these differences is essential not only for conservation biology but also for basic ecological theory. Here, we examine density responses by butterflies to patch size and use a quantitative theory on the scaling of population density with patch size to interpret results. Theory suggests that the density distribution of mobile species along a patch size gradient should depend on the scaling of net migration rates, whereas the density distribution of less mobile species should depend more on local growth. Using data from 11 localities in three European countries, we calculated the slope in the relationship between patch size and population density. These slopes were evaluated in relation to butterfly traits and matrix composition. As estimates of butterfly mobility we used both wing span and expert mobility rankings. The slope of the density–area relationship changed as predicted with wing span and the association of species to grasslands. Large and highly mobile species had a negative slope, similarly for grassland specialists and generalist species, and the slope matched quantitative predictions based on the scaling of net migration rates. Small and less mobile grassland specialists had a slope that was less negative than the slope of large and mobile grassland specialists, whereas the slope did not change with size for generalist species. These analyses suggest that the variability in response among butterfly species to patch size could be explained by accounting for body size/mobility and habitat associations among species. A caveat is that edge effects are not explicitly included in the model analysis, and future research should aim to combine area and edge effects in a common theoretical framework.
  •  
4.
  • Hambäck, Peter, et al. (författare)
  • Habitat specialisation, body-size and family identity explain Lepidopteran density-area relationships in a cross-continental comparison.
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. ; 104:20, s. 8368-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Habitat fragmentation may strongly affect species density, species interactions and the rate of ecosystem processes. It is therefore important to understand the observed variability among species responses to fragmentation, and the underlying mechanisms. In this study, we compare density-area relationships (DAR) for 344 lepidopteran species belonging to 22 families (butterflies and moths). This analysis suggested that the DARslope is generally positive for moths and negative for butterflies. The differences are suggested to occur because moths are largely olfactory searchers, whereas most butterflies are visual searchers. The analysis also suggests that DARs vary as a function of habitat specialisation and body size. In butterflies, generalist species had a more negative DARslope than specialist species because of a lower patch size threshold. In moths, the differences in DARslope between forest and open habitat species were large for small species but absent for large species. This is argued to occur because the DARslope in large species mainly reflect their search mode, which does not necessarily vary between moth groups, whereas the slope in small species reflect population growth rates.
  •  
5.
  • Krauss, Tobias, et al. (författare)
  • Preventive medicine of von Hippel-Lindau disease-associated pancreatic neuroendocrine tumors
  • 2018
  • Ingår i: Endocrine-Related Cancer. - : BIOSCIENTIFICA LTD. - 1351-0088 .- 1479-6821. ; 25:9, s. 783-793
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic neuroendocrine tumors (PanNETs) are rare in von Hippel-Lindau disease (VHL) but cause serious morbidity and mortality. Management guidelines for VHL-PanNETs continue to be based on limited evidence, and survival data to guide surgical management are lacking. We established the European-American-Asian-VHL-PanNET-Registry to assess data for risks for metastases, survival and long-term outcomes to provide best management recommendations. Of 2330 VHL patients, 273 had a total of 484 PanNETs. Median age at diagnosis of PanNET was 35 years (range 10-75). Fifty-five (20%) patients had metastatic PanNETs. Metastatic PanNETs were significantly larger (median size 5 vs 2 cm; P < 0.001) and tumor volume doubling time (TVDT) was faster (22 vs 126 months; P = 0.001). All metastatic tumors were >= 2.8 cm. Codons 161 and 167 were hotspots for VHL germline mutations with enhanced risk for metastatic PanNETs. Multivariate prediction modeling disclosed maximum tumor diameter and TVDT as significant predictors for metastatic disease (positive and negative predictive values of 51% and 100% for diameter cut-off >= 2.8 cm, 44% and 91% for TVDT cut-off of <= 24 months). In 117 of 273 patients, PanNETs > 1.5 cm in diameter were operated. Ten-year survival was significantly longer in operated vs non-operated patients, in particular for PanNETs < 2.8 cm vs >= 2.8 cm (94% vs 85% by 10 years; P = 0.020; 80% vs 50% at 10 years; P = 0.030). This study demonstrates that patients with PanNET approaching the cut-off diameter of 2.8 cm should be operated. Mutations in exon 3, especially of codons 161/167 are at enhanced risk for metastatic PanNETs. Survival is significantly longer in operated non-metastatic VHL-PanNETs.
  •  
6.
  • Kuussaari, Mikko, et al. (författare)
  • Extinction debt: a challenge for biodiversity conservation
  • 2009
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier BV. - 0169-5347 .- 1872-8383. ; 24:10, s. 564-571
  • Tidskriftsartikel (refereegranskat)abstract
    • Local extinction of species can occur with a substantial delay following habitat loss or degradation. Accumulating evidence suggests that such extinction debts pose a significant but often unrecognized challenge for biodiversity conservation across a wide range of taxa and ecosystems. Species with long generation times and populations near their extinction threshold are most likely to have an extinction debt. However, as long as a species that is predicted to become extinct still persists, there is time for conservation measures such as habitat restoration and landscape management. Standardized long-term monitoring, more high-quality empirical studies on different taxa and ecosystems and further development of analytical methods will help to better quantify extinction debt and protect biodiversity.
  •  
7.
  • Lichtenberg, Elinor M., et al. (författare)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
8.
  • Marini, Lorenzo, et al. (författare)
  • Contrasting effects of habitat area and connectivity on evenness of pollinator communities
  • 2014
  • Ingår i: Ecography. - : Wiley. - 1600-0587 .- 0906-7590. ; 37:6, s. 544-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Losses of both habitat area and connectivity have been identified as important drivers of species richness declines, but little theoretical and empirical work exists that addresses the effect of fragmentation on relative commonness of highly mobile species such as pollinating insects. With a large dataset of wild bee and butterfly abundances collected across Europe, we first tested the effect of habitat area and connectivity on evenness in pollinator communities using a large array of indexes that give different weight to dominance and rarity. Second, we tested if traits related to mobility and diet breadth could explain the observed evenness patterns. We found a clear negative effect of area and a weaker, but positive effect of connectivity on evenness. Communities in small habitat fragments were mainly composed of mobile and generalist species. The higher evenness in small fragments could thereby be generated by highly mobile species that maintain local populations with frequent inter-fragment movements. Trait analysis suggested an increasing importance of dispersal over local recruitment, as we move from large to small fragments and from less to more connected fragments. Species richness and evenness were negatively correlated indicating that the two variables responded differently to habitat area and connectivity, although the mechanisms underlying the observed patterns are difficult to isolate. Even though habitat area and connectivity often decrease simultaneously due to habitat fragmentation, an interesting practical implication of the contrasting effect of the two variables is that the resulting community composition will depend on the relative strength of these two processes.
  •  
9.
  • Marini, Lorenzo, et al. (författare)
  • Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss
  • 2012
  • Ingår i: Diversity & distributions. - : Wiley. - 1366-9516 .- 1472-4642. ; 18:9, s. 898-908
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life-history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life-history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life-history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large-scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.
  •  
10.
  • Soliveres, Santiago, et al. (författare)
  • Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7617, s. 456-459
  • Tidskriftsartikel (refereegranskat)abstract
    • Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (12)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Krauss, Jochen (11)
Steffan-Dewenter, In ... (8)
Bommarco, Riccardo (6)
Öckinger, Erik (4)
Kuussaari, Mikko (4)
Westphal, Catrin (4)
visa fler...
Wolters, Volkmar (4)
Weisser, Wolfgang W. (4)
Diekötter, Tim (4)
Birkhofer, Klaus (3)
Tscharntke, Teja (3)
Allan, Eric (3)
Prati, Daniel (3)
Gossner, Martin M. (3)
Boch, Steffen (3)
Jung, Kirsten (3)
Klein, Alexandra Mar ... (3)
Klaus, Valentin H. (3)
Kleinebecker, Till (3)
Lange, Markus (3)
Morris, E. Kathryn (3)
Pasalic, Esther (3)
Rillig, Matthias C. (3)
Socher, Stephanie A. (3)
Steckel, Juliane (3)
Weiner, Christiane N ... (3)
Werner, Michael (3)
Wubet, Tesfaye (3)
Renner, Swen C. (3)
Buscot, Francois (3)
Fischer, Markus (3)
Franzén, Markus (2)
Smith, Henrik (2)
Lindborg, Regina (2)
Marini, Lorenzo (2)
Poveda, Katja (2)
Batáry, Péter (2)
Bergman, Karl-Olof (2)
Hambäck, Peter (2)
Müller, Jörg (2)
Stefanescu, Constant ... (2)
Hölzel, Norbert (2)
Schöning, Ingo (2)
Alt, Fabian (2)
Oelmann, Yvonne (2)
Overmann, Jörg (2)
Schloter, Michael (2)
Schrumpf, Marion (2)
Wurst, Susanne (2)
Helm, Aveliina (2)
visa färre...
Lärosäte
Lunds universitet (7)
Sveriges Lantbruksuniversitet (7)
Stockholms universitet (5)
Linköpings universitet (4)
Umeå universitet (2)
Uppsala universitet (1)
visa fler...
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Lantbruksvetenskap (3)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy