SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krecl Patricia) "

Sökning: WFRF:(Krecl Patricia)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krecl, Patricia, et al. (författare)
  • A feasibility study of mapping light-absorbing carbon using a taxi fleet as a mobile platform
  • 2014
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 66, s. 23533-
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon-containing particles are associated with adverse health effects, and their light-absorbing fractions were recently estimated to be the second largest contributor to global warming after carbon dioxide. Knowledge on the spatiotemporal variability of light-absorbing carbon (LAC) particles in urban areas is relevant for air quality management and to better diagnose the population exposure to these particles. This work reports on the first mobile LAC mass concentrations (M-LAC) measured on-board four taxis in the Stockholm metropolitan area in November 2011. On average, concentrations were higher and more variable during daytime (median of 1.9 mu g m(-3) and median absolute deviation of 2.3 mu g m(-3)). Night-time (21:00-05:00) measurements were very similar for all road types and also compared to levels monitored at an urban background fixed site (median of 0.9 mu g m(-3)). We observed a large intra-urban variability in concentrations, with maxima levels inside road tunnels (median and 95th percentile of 7.5 and 40.1 mu g m(-3), respectively). Highways presented the second ranked concentrations (median and 95th percentile of 3.2 and 9.7 mu g m(-3), respectively) associated with highest vehicle speed (median of 65 km h(-1)), traffic rates (median of 62 000 vehicles day(-1) and 1500 vehicles h(-1)) and diesel vehicles share (7-10%) when compared to main roads, canyon streets, and local roads. Multiple regression modelling identified hourly traffic rate and M-LAC concentration measured at an urban background site as the best predictors of on-road concentrations, but explained only 25% of the observed variability. This feasibility study proved to be a time-and cost-effective approach to map out ambient M-LAC concentrations in Stockholm and more research is required to represent the distribution in other periods of the year. Simultaneous monitoring of other pollutants, closely correlated to M-LAC levels in traffic-polluted environments, and including video recording of road and traffic changes would be an asset.
  •  
2.
  •  
3.
  • Krecl, Patricia, et al. (författare)
  • Characterisation and Source Apportionment of Submicron Particle Number Size Distributions in a Busy Street Canyon
  • 2015
  • Ingår i: Aerosol and Air Quality Research. - : Taiwan Association for Aerosol Research. - 1680-8584 .- 2071-1409. ; 15:1, s. 220-233
  • Tidskriftsartikel (refereegranskat)abstract
    • Street canyons are well-known hot spots due to the harmful exposure to high concentrations of atmospheric pollutants emitted mainly by motor vehicles. We report on measurements of air pollutants conducted in a street canyon in Stockholm (Sweden) in spring 2006. Particle number size distributions (PNSD) were measured in the 25-606 nm range, along with total particle number, light-absorbing carbon mass concentration (M-LAC), PM10, NOx, CO, traffic rate (TR), vehicle speed and meteorological variables. We used PNSD as input to the positive matrix factorisation (PMF) analysis to identify and apportion the pollutant sources. All pollutants showed distinct diurnal patterns, with highest concentrations in weekday mornings (08:00-09:00). TR was always higher on weekdays, except for the early hours (00:00-06:00). The raise in the weekend early-hour TR was accompanied by the largest MLAC of the day, a higher NOx/CO ratio compared to weekdays and a modal shift of PNSD towards larger diameters (47-56 nm), indicates a change in the vehicle fleet share to being dominated by diesel-run taxis. The largest contribution to the submicron particles was observed for winds blowing along the canyon, transporting particles emitted by vehicles accelerating from the traffic lights at the intersection, uphill towards the measurement site, and from the nearby streets. Three PMF factors were identified: local emissions from a mixed fleet dominated by gasoline engines, local traffic emissions highly impacted by diesel vehicles, and urban background aerosol. On average, gasoline-fuelled vehicles largely contributed to NOx, and particle number concentrations (54-65%), whereas M-LAC sources were dominated by diesel emissions, especially at weekends in the early hours (73%). The urban background contribution was rather low (4-13%) and with little dependence on the weekday. This work demonstrated how particle size distribution measurements, together with M-LAC, NOx and CO can be used to quantify the contribution from diesel and gasoline vehicles.
  •  
4.
  • Krecl, Patricia, et al. (författare)
  • Contribution of residential wood combustion to hourly winter aerosol in Northern Sweden determined by positive matrix factorization
  • 2008
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:13, s. 3639-3653
  • Tidskriftsartikel (refereegranskat)abstract
    • The combined effect of residential wood combustion (RWC) emissions with stable atmospheric conditions. which frequently occurs in Northern Sweden during wintertime, can deteriorate the air quality even in small towns. To estimate the contribution of RWC to the total atmospheric aerosol loading, positive matrix factorization (PMF) was applied to hourly mean particle number size distributions measured in a residential area in Lycksele during winter 2005/2006. The sources were identified based on the particle number size distribution profiles of the PMF factors., the diurnal contributions patterns estimated by PMF for both weekends and weekdays, and correlation of the modeled particle number concentration per factor with measured aerosol mass concentrations (PM10, PM1, and light-absorbing carbon M-LAC). Through these analyses. the factors were identified as local traffic (factor 1), local RWC (factor 2), and local RWC plus Ion-range transport (LRT) of aerosols (factor 3). In some occasions, the PMF model could not separate the contributions of local RWC from background concentrations since their particle number size distributions partially overlapped. As a consequence, we report the contribution of RWC as a range of values, being the minimum determined by factor 2 and the possible maximum as the contributions of both factors 2 and 3. A multiple linear regression (MLR) of observed PM10, PM1, total particle number, and M-LAC concentrations is carried out to determine the source contribution to these aerosol variables. The results reveal RWC is an important source of atmospheric particles in the size range 25-606 nm (44-57%), PM10 (36-82%), PM1 (31-83%), and M-LAC (40-76%) mass concentrations in the winter season.
  •  
5.
  • Krecl, Patricia, et al. (författare)
  • Cyclists' exposure to air pollution under different traffic management strategies
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 723
  • Tidskriftsartikel (refereegranskat)abstract
    • We characterized the air pollution exposure of cyclists in the city center of Curitiba (Brazil) and then systematically analyzed the influence of several traffic management strategies (bus lanes, bicycle lanes, traffic calming area, traffic lights, and cleaner vehicle technologies) on the exposure. We focused on concentrations of particulates monitored on-board bicycles: PM2.5, black carbon mass (BC) and particle number concentration (PNC), and also reported on total volatile organic compound concentrations (TVOC). Overall, mean (+/- standard deviation) exposure was moderate compared to other cities around the world (BC: 6.98 +/- 11.53 mu g m(-3), PM2.5: 33.22 +/- 25.64 mu g m(-3), PNC: 3.93 x 10(4) +/- 4.17 x 10(4) cm(-3), TVOC: 361 +/- 99 ppb). Concentrations were higher in the morning rush hour than in the afternoon traffic peak, and exhibited a large spatial variability. Bus stops and signalized traffic intersections emerged as hotspots when compared to the rest of the journey, increasing all particulate concentrations. Lower exposure was found on streets with low traffic (particularly, small number of heavy-duty vehicles) and within shallow canyon structures. The impact of traffic calming areas on cyclists' exposure is still inconclusive and further experimental and modelling studies are needed. Simple emission calculations based on traffic activity and real-world emission factors suggested that replacing the diesel bus fleet with hybrid electric buses might largely decrease (64%) the exposure to BC in the city center. Urban planners could use this valuable information to project new cycleways, which would lead to healthier active transportation. Synchronizing traffic signals might further reduce exposure at intersections.
  •  
6.
  • Krecl, Patricia, et al. (författare)
  • Diurnal variation of atmospheric aerosol during the wood combustion season in Northern Sweden
  • 2008
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 42:18, s. 4113-4125
  • Tidskriftsartikel (refereegranskat)abstract
    • A set of aerosol measurements was conducted in the residential area of Forsdala in Lycksele, Northern Sweden, during winter 2005/2006. This article describes the temporal and diurnal variation of the aerosol physical properties (concentrations of PM10, PM1, light-absorbing carbon, and particle number, and number size distributions), and the relationship among aerosol concentrations and meteorological variables. A large day-to-day and hour-to-hour variability in aerosol concentrations was observed during the intensive study period. Evening aerosol concentrations were statistically significantly higher on weekends than on weekdays. On weekdays, particle size distribution and concentrations varied diurnally with small particles (diameter <30 nm) associated mainly with morning motor vehicle emissions. The results suggest that a combination of emissions from residential wood combustion and traffic sources might explain the high evening concentrations of PM10, PM1, particle number, and light-absorbing carbon as well as large geometric mean diameters observed during weekdays and weekends. Strong correlations of PM10 and PM1 with particle size distributions are found in the diameter range 130–500 nm and are remarkably high on weekend evenings when larger particles are sampled. The correlation between light-absorbing carbon mass concentration and particle size distribution is high regarding both particle number and mass for particle diameters >95 nm. High aerosol concentrations were associated with low air temperatures and very stable atmospheric conditions close to the ground.
  •  
7.
  • Krecl, Patricia, 1968- (författare)
  • Impact of residential wood combustion on urban air quality
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Wood combustion is mainly used in cold regions as a primary or supplemental space heating source in residential areas. In several industrialized countries, there is a renewed interest in residential wood combustion (RWC) as an alternative to fossil fuel and nuclear power consumption. The main objective of this thesis was to investigate the impact of RWC on the air quality in urban areas. To this end, a field campaign was conducted in Northern Sweden during wintertime to characterize atmospheric aerosol particles and polycyclic aromatic hydrocarbons (PAH) and to determine their source apportionment.A large day-to-day and hour-to-hour variability in aerosol concentrations was observed during the intensive field campaign. On average, total carbon contributed a substantial fraction of PM10 mass concentrations (46%) and aerosol particles were mostly in the fine fraction (PM1 accounted for 76% of PM10). Evening aerosol concentrations were significantly higher on weekends than on weekdays which could be associated to the use of wood burning for recreational purposes or higher space heat demand when inhabitants spend longer time at home. It has been shown that continuous aerosol particle number size distribution measurements successfully provided source apportionment of atmospheric aerosol with high temporal resolution. The first compound-specific radiocarbon analysis (CSRA) of atmospheric PAH demonstrated its potential to provide quantitative information on the RWC contribution to individual PAH. RWC accounted for a large fraction of particle number concentrations in the size range 25-606 nm (44-57%), PM10 (36-82%), PM1 (31-83%), light-absorbing carbon (40-76%) and individual PAH (71-87%) mass concentrations.These studies have demonstrated that the impact of RWC on air quality in an urban location can be very important and largely exceed the contribution of vehicle emissions during winter, particularly under very stable atmospheric conditions.
  •  
8.
  • Krecl, Patricia, et al. (författare)
  • Long-term trends in nitrogen oxides concentrations and on-road vehicle emission factors in Copenhagen, London and Stockholm
  • 2021
  • Ingår i: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 290
  • Tidskriftsartikel (refereegranskat)abstract
    • Road transport is the main anthropogenic source of NOx in Europe, affecting human health and ecosystems. Thus, mitigation policies have been implemented to reduce on-road vehicle emissions, particularly through the Euro standard limits. To evaluate the effectiveness of these policies, we calculated NO2 and NOx concentration trends using air quality and meteorological measurements conducted in three European cities over 26 years. These data were also employed to estimate the trends in NOx emission factors (EFNOx, based on inverse dispersion modeling) and NO2:NOx emission ratios for the vehicle fleets under real-world driving conditions. In the period 1998–2017, Copenhagen and Stockholm showed large reductions in both the urban background NOx concentrations (−2.1 and −2.6% yr−1, respectively) and EFNOx at curbside sites (68 and 43%, respectively), proving the success of the Euro standards in diminishing NOx emissions. London presented a modest decrease in urban background NOx concentrations (−1.3% yr−1), while EFNOx remained rather constant at the curbside site (Marylebone Road) due to the increase in public bus traffic. NO2 primary emissions —that are not regulated— increased until 2008–2010, which also reflected in the ambient concentrations. This increase was associated with a strong dieselization process and the introduction of new after-treatment technologies that targeted the emission reduction of other species (e.g., greenhouse gases or particulate matter). Thus, while regulations on ambient concentrations of specific species have positive effects on human health, the overall outcomes should be considered before widely adopting them. Emission inventories for the on-road transportation sector should include EFNOx derived from real-world measurements, particularly in urban settings.
  •  
9.
  • Krecl, Patricia, et al. (författare)
  • Spatiotemporal distribution of light-absorbing carbon and its relationship to other atmospheric pollutants in Stockholm
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:22, s. 11553-11567
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon-containing particles have deleterious effects on both Earth's climate and human health. In Europe, the main sources of light-absorbing carbon (LAC) emissions are the transport (67%) and residential (25%) sectors. Information on the spatiotemporal variability of LAC particles in urban areas is relevant for air quality management and to better diagnose the population exposure to these particles. This study reports on results of an intensive field campaign conducted at four sites (two kerbside stations, one urban background site and a rural station) in Stockholm, Sweden, during the spring 2006. Light-absorbing carbon mass (M(LAC)) concentrations were measured with custom-built Particle Soot Absorption Photometers (PSAP). The spatiotemporal variability of M(LAC) concentrations was explored by examining correlation coefficients (R), coefficients of divergence (COD), and diurnal patterns at all sites. Simultaneous measurements of NO(x), PM(10), PM(2.5), and meteorological variables were also carried out at the same locations to help characterize the LAC emission sources. Hourly mean (+/- standard deviation) M(LAC) concentrations ranged from 0.36 +/- 0.50 at the rural site to 5.39 +/- 3.60 mu g m(-3) at the street canyon site. Concentrations of LAC between urban sites were poorly correlated even for daily averages (R<0.70), combined with highly heterogeneously distributed concentrations (COD>0.30) even at spatial scales of few kilometers. This high variability is connected to the distribution of emission sources and processes contributing to the LAC fraction at these sites. At urban sites, M(LAC) tracked NO(x) levels and traffic density well and mean M(LAC)/PM(2.5) ratios were larger (26-38%) than at the background sites (4-10 %). The results suggest that vehicle exhaust emissions are the main responsible for the high M(LAC) concentrations found at the urban locations whereas long-range transport (LRT) episodes of combustion-derived particles can generate a strong increase of levels at background sites. To decrease pollution levels at kerbside and urban background locations in Stockholm, we recommend abatement strategies that target reductions of vehicle exhaust emissions, which are the main contributors to M(LAC) and NO(x) concentrations.
  •  
10.
  • Krecl, Patricia, et al. (författare)
  • Spatiotemporal Variability of Light-Absorbing Carbon Concentration in a Residential Area Impacted by Woodsmoke
  • 2010
  • Ingår i: Journal of the Air & Waste Management Association. - : Informa UK Limited. - 1047-3289 .- 1096-2247 .- 2162-2906. ; 60:3, s. 356-368
  • Tidskriftsartikel (refereegranskat)abstract
    • Residential wood combustion (RWC) is responsible for 33% of the total carbon mass emitted in Europe. With the new European targets to increase the use of renewable energy, there is a growing concern that the population exposure to woodsmoke will also increase. This study investigates observed and simulated light-absorbing carbon mass (M-LAC) concentrations in a residential neighborhood (Lycksele, Sweden) where RWC is a major air pollution source during winter. The measurement analysis included descriptive statistics, correlation coefficient, coefficient of divergence, linear regression, concentration roses, diurnal pattern, and weekend versus weekday concentration ratios. Hourly RWC and road traffic contributions to M-LAC were simulated with a Gaussian dispersion model to assess whether the model was able to mimic the observations. Hourly mean and standard deviation concentrations measured at six sites ranged from 0.58 to 0.74 mu g m(-3) and from 0.59 to 0.79 mu g m(-3), respectively. The temporal and spatial variability decreased with increasing averaging time. Low-wind periods with relatively high M-LAC concentrations correlated more strongly than high-wind periods with low concentrations. On average, the model overestimated the observations by 3- to 5-fold and explained less than 10% of the measured hourly variability at all sites. Large residual concentrations were associated with weak winds and relatively high M-LAC loadings. The explanation of the observed variability increased to 31-45% when daily mean concentrations were compared. When the contribution from the boilers within the neighborhood was excluded from the simulations, the model overestimation decreased to 16-71%. When assessing the exposure to light-absorbing carbon particles using this type of model, the authors suggest using a longer averaging period (i.e., daily concentrations) in a larger area with an updated and very detailed emission inventory.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy