SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kredo Tamara) "

Sökning: WFRF:(Kredo Tamara)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kredo, Tamara, et al. (författare)
  • Guide to clinical practice guidelines: the current state of play
  • 2016
  • Ingår i: International Journal for Quality in Health Care. - : OXFORD UNIV PRESS. - 1353-4505 .- 1464-3677. ; 28:1, s. 122-128
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Extensive research has been undertaken over the last 30 years on the methods underpinning clinical practice guidelines (CPGs), including their development, updating, reporting, tailoring for specific purposes, implementation and evaluation. This has resulted in an increasing number of terms, tools and acronyms. Over time, CPGs have shifted from opinion-based to evidence-informed, including increasingly sophisticated methodologies and implementation strategies, and thus keeping abreast of evolution in this field of research can be challenging. Methods: This article collates findings from an extensive document search, to provide a guide describing standards, methods and systems reported in the current CPG methodology and implementation literature. This guide is targeted at those working in health care quality and safety and responsible for either commissioning, researching or delivering health care. It is presented in a way that can be updated as the field expands. Conclusion: CPG development and implementation have attracted the most international interest and activity, whilst CPG updating, adopting (with or without contextualization), adapting and impact evaluation are less well addressed.
  •  
2.
  • Pessano, Sara, et al. (författare)
  • Ibuprofen for acute postoperative pain in children
  • 2022
  • Ingår i: Cochrane Database of Systematic Reviews. - 1465-1858. ; 2022:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: This is a protocol for a Cochrane Review (intervention). The objectives are as follows:. To assess the efficacy and safety of ibuprofen (any dose) for acute postoperative pain management in children compared with placebo or other active comparators. To compare ibuprofen administered by different doses, routes (e.g. oral, intravenous, etc.), or strategies (e.g. as needed versus as scheduled).
  •  
3.
  • Ringsten, Martin, et al. (författare)
  • Diclofenac for acute postoperative pain in children
  • 2022
  • Ingår i: Cochrane Database of Systematic Reviews. - 1465-1858. ; 2022:4
  • Forskningsöversikt (refereegranskat)abstract
    • Objectives: This is a protocol for a Cochrane Review (intervention). The objectives are as follows:. To assess the efficacy and safety of diclofenac (any dose) for acute postoperative pain management in children compared with placebo, other active comparators, or diclofenac administered by either different routes (e.g. oral, rectal, etc.) or strategies (e.g. as needed versus as scheduled).
  •  
4.
  • Ringsten, Martin, et al. (författare)
  • Diclofenac for acute postoperative pain in children
  • 2023
  • Ingår i: Cochrane Database of Systematic Reviews. - 1465-1858. ; 2023:12
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Many children undergo various surgeries, which often lead to acute postoperative pain. This pain influences recovery and quality of life. Non-steroidal anti-inflammatory drugs (NSAIDs), specifically cyclo-oxygenase (COX) inhibitors such as diclofenac, can be used to treat pain and reduce inflammation. There is uncertainty regarding diclofenac's benefits and harms compared to placebo or other drugs for postoperative pain. Objectives: To assess the efficacy and safety of diclofenac (any dose) for acute postoperative pain management in children compared with placebo, other active comparators, or diclofenac administered by different routes (e.g. oral, rectal, etc.) or strategies (e.g. 'as needed' versus 'as scheduled'). Search methods: We used standard, extensive Cochrane search methods. We searched CENTRAL, MEDLINE, and trial registries on 11 April 2022. Selection criteria: We included randomised controlled trials (RCTs) in children under 18 years of age undergoing surgery that compared diclofenac (delivered in any dose and route) to placebo or any active pharmacological intervention. We included RCTs comparing different administration routes of diclofenac and different strategies. Data collection and analysis: We used standard methodological procedures expected by Cochrane. Our primary outcomes were: pain relief (PR) reported by the child, defined as the proportion of children reporting 50% or better postoperative pain relief; pain intensity (PI) reported by the child; adverse events (AEs); and serious adverse events (SAEs). We presented results using risk ratios (RR), mean differences (MD), and standardised mean differences (SMD), with the associated confidence intervals (CI). Main results: We included 32 RCTs with 2250 children. All surgeries were done using general anaesthesia. Most studies (27) included children above age three. Only two studies had an overall low risk of bias; 30 had an unclear or high risk of bias in one or several domains. Diclofenac versus placebo (three studies). None of the included studies reported on PR or PI. We are very uncertain about the benefits and harms of diclofenac versus placebo on nausea/vomiting (RR 0.83, 95% CI 0.38 to 1.80; 2 studies, 100 children) and any reported bleeding (RR 3.00, 95% CI 0.34 to 26.45; 2 studies, 100 children), both very low-certainty evidence. None of the included studies reported SAEs. Diclofenac versus opioids (seven studies). We are very uncertain if diclofenac reduces PI at 2 to 24 hours postoperatively compared to opioids (median pain intensity 0.3 (interquartile range (IQR) 0.0 to 2.5) for diclofenac versus median 0.7 (IQR 0.1 to 2.4) in the opioid group; 1 study, 50 children; very low-certainty evidence). None of the included studies reported on PR or PI for other time points. Diclofenac probably results in less nausea/vomiting compared to opioids (41.0% in opioids, 31.0% in diclofenac; RR 0.75, 95% CI 0.58 to 0.96; 7 studies, 463 participants), and probably increases any reported bleeding (5.4% in opioids, 16.5% in diclofenac; RR 3.06, 95% CI 1.31 to 7.13; 2 studies, 222 participants), both moderate-certainty evidence. None of the included studies reported SAEs. Diclofenac versus paracetamol (10 studies). None of the included studies assessed child-reported PR. Compared to paracetamol, we are very uncertain if diclofenac: reduces PI at 0 to 2 hours postoperatively (SMD -0.45, 95% CI -0.74 to -0.15; 2 studies, 180 children); reduces PI at 2 to 24 hours postoperatively (SMD -0.64, 95% CI -0.89 to -0.39; 3 studies, 300 children); reduces nausea/vomiting (RR 0.47, 95% CI 0.25 to 0.87; 5 studies, 348 children); reduces bleeding events (RR 0.57, 95% CI 0.12 to 2.62; 5 studies, 332 participants); or reduces SAEs (RR 0.50, 95% CI 0.05 to 5.22; 1 study, 60 children). The evidence certainty was very low for all outcomes. Diclofenac versus bupivacaine (five studies). None of the included studies reported on PR or PI. Compared to bupivacaine, we are very uncertain about the effect of diclofenac on nausea/vomiting (RR 1.28, 95% CI 0.58 to 2.78; 3 studies, 128 children) and SAEs (RR 4.52, 95% CI 0.23 to 88.38; 1 study, 38 children), both very low-certainty evidence. Diclofenac versus active pharmacological comparator (10 studies). We are very uncertain about the benefits and harms of diclofenac versus any other active pharmacological comparator (dexamethasone, pranoprofen, fluorometholone, oxybuprocaine, flurbiprofen, lignocaine), and for different routes and delivery of diclofenac, due to few and small studies, no reporting of key outcomes, and very low-certainty evidence for the reported outcomes. We are unable to draw any meaningful conclusions from the numerical results. Authors' conclusions: We remain uncertain about the efficacy of diclofenac compared to placebo, active comparators, or by different routes of administration, for postoperative pain management in children. This is largely due to authors not reporting on clinically important outcomes; unclear reporting of the trials; or poor trial conduct reducing our confidence in the results. We remain uncertain about diclofenac's safety compared to placebo or active comparators, except for the comparison of diclofenac with opioids: diclofenac probably results in less nausea and vomiting compared with opioids, but more bleeding events. For healthcare providers managing postoperative pain, diclofenac is a COX inhibitor option, along with other pharmacological and non-pharmacological approaches. Healthcare providers should weigh the benefits and risks based on what is known of their respective pharmacological effects, rather than known efficacy. For surgical interventions in which bleeding or nausea and vomiting are a concern postoperatively, the risks of adverse events using opioids or diclofenac for managing pain should be considered.
  •  
5.
  • Svensson, Elin, et al. (författare)
  • Integration of data from multiple sources for simultaneous modelling analysis : experience from nevirapine population pharmacokinetics
  • 2012
  • Ingår i: British Journal of Clinical Pharmacology. - : Wiley. - 0306-5251 .- 1365-2125. ; 74:3, s. 465-476
  • Tidskriftsartikel (refereegranskat)abstract
    • WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Integrating individual data from multiple sources in one simultaneous population analysis (sometimes called a mega-model) can address novel research questions and add power for covariate detection without requiring new clinical studies. However, the development of this type of model can be challenging and time consuming. Nevirapine is a non-nucleoside reverse transcriptase inhibitor commonly used for treatment of human immunodeficiency virus infection in resource-limited settings.WHAT THIS STUDY ADDS This study outlines a strategy for integration of data from multiple sources for modelling analysis. It provides suggestions on handling of missing covariates in the context of several data sources and a starting point for development of a multinational nevirapine mega-model. AIMS To propose a modelling strategy to efficiently integrate data from different sources in one simultaneous analysis, using nevirapine population pharmacokinetic data as an example.METHODS Data from three studies including 115 human immunodeficiency virus-infected South African adults were used. Patients were on antiretroviral therapy regimens including 200 mg nevirapine twice daily and sampled at steady state. A development process was suggested, implemented in NONMEM7 and the final model evaluated with an external data set.RESULTS A stepwise approach proved efficient. Model development started with the intensively sampled data. Data were added sequentially, using visual predictive checks for inspecting their compatibility with the existing model. Covariate exploration was carried out, and auxiliary regression models were designed for imputation of missing covariates. Nevirapine pharmacokinetics was described by a one-compartment model with absorption through two transit compartments. Body size was accounted for using allometric scaling. The model included a mixture of two subpopulations with different typical values of clearance, namely fast (3.12 l h-1) and slow metabolizers (1.45 l h-1), with 17% probability of belonging to the latter. Absorption displayed large between-occasion variability, and food slowed the absorption mean transit time from 0.6 to 2.5 h. Concomitant antitubercular treatment including rifampicin typically decreased bioavailability by 39%, with significant between-subject variability. Visual predictive checks of external validation data indicated good predictive performance.CONCLUSIONS The development strategy succeeded in integrating data from different sources to produce a model with robust parameter estimates. This work paves the way for the creation of a nevirapine mega-model, including additional data from numerous diverse sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy