SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krona Cecilia 1976 ) "

Sökning: WFRF:(Krona Cecilia 1976 )

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almstedt, Elin, 1988-, et al. (författare)
  • Integrative discovery of treatments for high-risk neuroblastoma
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.
  •  
2.
  • Castell, Alina, et al. (författare)
  • MYCMI-7 : A Small MYC-Binding Compound that Inhibits MYC: MAX Interaction and Tumor Growth in a MYC-Dependent Manner
  • 2022
  • Ingår i: Cancer Research Communications. - : American Association For Cancer Research (AACR). - 2767-9764. ; 2:3, s. 182-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Deregulated expression of MYC family oncogenes occurs frequently in human cancer and is often associated with aggressive disease and poor prognosis. While MYC is a highly warranted target, it has been considered "undruggable," and no specific anti-MYC drugs are available in the clinic. We recently identified molecules named MYCMIs that inhibit the interaction between MYC and its essential partner MAX. Here we show that one of these molecules, MYCMI-7, efficiently and selectively inhibits MYC:MAX and MYCN:MAX interactions in cells, binds directly to recombinant MYC, and reduces MYC-driven transcription. In addition, MYCMI-7 induces degradation of MYC and MYCN proteins. MYCMI-7 potently induces growth arrest/apoptosis in tumor cells in a MYC/MYCN-dependent manner and downregulates the MYC pathway on a global level as determined by RNA sequencing. Sensitivity to MYCMI-7 correlates with MYC expression in a panel of 60 tumor cell lines and MYCMI-7 shows high efficacy toward a collection of patient-derived primary glioblastoma and acute myeloid leukemia (AML) ex vivo cultures. Importantly, a variety of normal cells be- come G1 arrested without signs of apoptosis upon MYCMI-7 treatment. Finally, in mouse tumor models of MYC-driven AML, breast cancer, and MYCN-amplified neuroblastoma, treatment with MYCMI-7 downregu- lates MYC/MYCN, inhibits tumor growth, and prolongs survival through apoptosis with few side effects. In conclusion, MYCMI-7 is a potent and selective MYC inhibitor that is highly relevant for the development into clinically useful drugs for the treatment of MYC-driven cancer.Significance: Our findings demonstrate that the small-molecule MYCMI-7 binds MYC and inhibits interaction between MYC and MAX, thereby ham- pering MYC-driven tumor cell growth in culture and in vivo while sparing normal cells.
  •  
3.
  • Johansson, Patrik, et al. (författare)
  • A Patient-Derived Cell Atlas Informs Precision Targeting of Glioblastoma
  • 2020
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 32:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplantation models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhibitors in GBM cells, We can further predict the responses of individual cell cultures to several existing drug classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled biobank provides a valuable resource for the discovery of new treatments for GBM.
  •  
4.
  • Lundsten, Sara, et al. (författare)
  • p53-Mediated Radiosensitization of 177Lu-DOTATATE in Neuroblastoma Tumor Spheroids
  • 2021
  • Ingår i: Biomolecules. - : MDPI. - 2218-273X. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • p53 is involved in DNA damage response and is an exciting target for radiosensitization in cancer. Targeted radionuclide therapy against somatostatin receptors with 177Lu-DOTATATE is currently being explored as a treatment for neuroblastoma. The aim of this study was to investigate the novel p53-stabilizing peptide VIP116 in neuroblastoma, both as monotherapy and together with 177Lu-DOTATATE. Five neuroblastoma cell lines, including two patient-derived xenograft (PDX) lines, were characterized in monolayer cultures. Four out of five were positive for 177Lu-DOTATATE uptake. IC50 values after VIP116 treatments correlated with p53 status, ranging between 2.8–238.2 μM. IMR-32 and PDX lines LU-NB-1 and LU-NB-2 were then cultured as multicellular tumor spheroids and treated with 177Lu-DOTATATE and/or VIP116. Spheroid growth was inhibited in all spheroid models for all treatment modalities. The most pronounced effects were observed for combination treatments, mediating synergistic effects in the IMR-32 model. VIP116 and combination treatment increased p53 levels with subsequent induction of p21, Bax and cleaved caspase 3. Combination treatment resulted in a 14-fold and 1.6-fold induction of MDM2 in LU-NB-2 and IMR-32 spheroids, respectively. This, together with differential MYCN signaling, may explain the varying degree of synergy. In conclusion, VIP116 inhibited neuroblastoma cell growth, potentiated 177Lu-DOTATATE treatment and could, therefore, be a feasible treatment option for neuroblastoma.
  •  
5.
  • Matuszewski, Damian J., et al. (författare)
  • Image-Based Detection of Patient-Specific Drug-Induced Cell-Cycle Effects in Glioblastoma
  • 2018
  • Ingår i: SLAS Discovery. - : Elsevier BV. - 2472-5560 .- 2472-5552. ; 23:10, s. 1030-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Image-based analysis is an increasingly important tool to characterize the effect of drugs in large-scale chemical screens. Herein, we present image and data analysis methods to investigate population cell-cycle dynamics in patient-derived brain tumor cells. Images of glioblastoma cells grown in multiwell plates were used to extract per-cell descriptors, including nuclear DNA content. We reduced the DNA content data from per-cell descriptors to per-well frequency distributions, which were used to identify compounds affecting cell-cycle phase distribution. We analyzed cells from 15 patient cases representing multiple subtypes of glioblastoma and searched for clusters of cell-cycle phase distributions characterizing similarities in response to 249 compounds at 11 doses. We show that this approach applied in a blind analysis with unlabeled substances identified drugs that are commonly used for treating solid tumors as well as other compounds that are well known for inducing cell-cycle arrest. Redistribution of nuclear DNA content signals is thus a robust metric of cell-cycle arrest in patient-derived glioblastoma cells.
  •  
6.
  • Abel, Frida, 1974, et al. (författare)
  • Analyses of apoptotic regulators CASP9 and DFFA at 1P36.2, reveal rare allele variants in human neuroblastoma tumours.
  • 2002
  • Ingår i: British journal of cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 86:4, s. 596-604
  • Tidskriftsartikel (refereegranskat)abstract
    • The genes encoding Caspase-9 and DFF45 have both recently been mapped to chromosome region 1p36.2, that is a region alleged to involve one or several tumour suppressor genes in neuroblastoma tumours. This study presents an update contig of the 'Smallest Region of Overlap of deletions' in Scandinavian neuroblastoma tumours and suggests that DFF45 is localized in the region. The genomic organization of the human DFF45 gene, deduced by in-silico comparisons of DNA sequences, is described for the first time in this paper. In the present study 44 primary tumours were screened for mutation by analysis of the genomic sequences of the genes. In two out of the 44 tumours this detected in the DFFA gene one rare allele variant that caused a non-polar to a polar amino acid exchange in a preserved hydrophobic patch of DFF45. One case was hemizygous due to deletion of the more common allele of this polymorphism. Out of 194 normal control alleles only one was found to carry this variant allele, so in respect of it, no healthy control individual out of 97 was homozygous. Moreover, our RT-PCR expression studies showed that DFF45 is preferably expressed in low-stage neuroblastoma tumours and to a lesser degree in high-stage neuroblastomas. We conclude that although coding mutations of Caspase-9 and DFF45 are infrequent in neuroblastoma tumours, our discovery of a rare allele in two neuroblastoma cases should be taken to warrant further studies of the role of DFF45 in neuroblastoma genetics.
  •  
7.
  • Abel, Frida, 1974, et al. (författare)
  • Mutations in the N-terminal domain of DFF45 in a primary germ cell tumor and in neuroblastoma tumors.
  • 2004
  • Ingår i: International journal of oncology. - 1019-6439 .- 1791-2423. ; 25:5, s. 1297-302
  • Tidskriftsartikel (refereegranskat)abstract
    • DFF45 has essential functions in the final stage of apoptosis by acting both as a folding chaperone and a DNase inhibitor of DFF40. The gene encoding DFF45 (DFFA) maps to the consensus deleted region in primary neuroblastoma (NB; 1p36.2-3) and within the homozygously deleted region in an NB cell line (1p36.2). DFF45 is therefore an attractive candidate NB tumor suppressor. In a previous study we found a rare allele variant, causing a non-polar to a polar amino acid exchange (Ile69Thr) in a preserved hydrophobic patch of DFF45, and we also found DFFA to be preferentially expressed in favorable NB tumors. We have extended the previous study and performed mutation analyses in another 56 NB tumors (100 in total) as well as a set of other tumors for coding mutations in DFFA. We have also performed studies of the DFFA expression in tumors using real-time PCR. We found a missense mutation (Ile15Met) in the remaining allele of a teratoma with heterozygous deletion of 1p, and a three base-pair deletion in an NB of unknown stage causing a deletion of amino acid 37 in DFF45. The one-base substitution detected in the teratoma was not present in the patients constitutional DNA, i.e. it is a true mutation present in the tumor DNA only. In conclusion, three different coding alterations have been found in the region encoding the N-terminal regulatory domain of DFF45, responsible for binding and achieving its chaperone and inhibitor functions on other proteins. Moreover, by real-time RT-PCR expression study, we found the mRNA level of DFFA to be significantly (p=0.038) reduced by a factor of 1.7 times in NB tumors of unfavorable outcome.
  •  
8.
  • Almstedt, Elin, et al. (författare)
  • Real-time evaluation of glioblastoma growth in patient-specific zebrafish xenografts
  • 2021
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 24:5, s. 726-738
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Patient-derived xenograft (PDX) models of glioblastoma (GBM) are a central tool for neuro-oncology research and drug development, enabling the detection of patient-specific differences in growth, and in vivo drug response. However, existing PDX models are not well suited for large-scale or automated studies. Thus, here, we investigate if a fast zebrafish-based PDX model, supported by longitudinal, AI-driven image analysis, can recapitulate key aspects of glioblastoma growth and enable case-comparative drug testing.Methods: We engrafted 11 GFP-tagged patient-derived GBM IDH wild-type cell cultures (PDCs) into 1-day-old zebrafish embryos, and monitored fish with 96-well live microscopy and convolutional neural network analysis. Using light-sheet imaging of whole embryos, we analyzed further the invasive growth of tumor cells.Results: Our pipeline enables automatic and robust longitudinal observation of tumor growth and survival of individual fish. The 11 PDCs expressed growth, invasion and survival heterogeneity, and tumor initiation correlated strongly with matched mouse PDX counterparts (Spearman R = 0.89, p < 0.001). Three PDCs showed a high degree of association between grafted tumor cells and host blood vessels, suggesting a perivascular invasion phenotype. In vivo evaluation of the drug marizomib, currently in clinical trials for GBM, showed an effect on fish survival corresponding to PDC in vitro and in vivo marizomib sensitivity.Conclusions: Zebrafish xenografts of GBM, monitored by AI methods in an automated process, present a scalable alternative to mouse xenograft models for the study of glioblastoma tumor initiation, growth, and invasion, applicable to patient-specific drug evaluation.
  •  
9.
  • Astuti, D, et al. (författare)
  • Investigation of the role of SDHB inactivation in sporadic phaeochromocytoma and neuroblastoma.
  • 2004
  • Ingår i: British journal of cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 91:10, s. 1835-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Germline mutations in the succinate dehydrogenase (SDH) (mitochondrial respiratory chain complex II) subunit B gene, SDHB, cause susceptibility to head and neck paraganglioma and phaeochromocytoma. Previously, we did not identify somatic SDHB mutations in sporadic phaeochromocytoma, but SDHB maps to 1p36, a region of frequent loss of heterozygosity (LOH) in neuroblastoma as well. Hence, to evaluate SDHB as a candidate neuroblastoma tumour suppressor gene (TSG) we performed mutation analysis in 46 primary neuroblastomas by direct sequencing, but did not identify germline or somatic SDHB mutations. As TSGs such as RASSF1A are frequently inactivated by promoter region hypermethylation, we designed a methylation-sensitive PCR-based assay to detect SDHB promoter region methylation. In 21% of primary neuroblastomas and 32% of phaeochromocytomas (32%) methylated (and unmethylated) alleles were detected. Although promoter region methylation was also detected in two neuroblastoma cell lines, this was not associated with silencing of SDHB expression, and treatment with a demethylating agent (5-azacytidine) did not increase SDH activity. These findings suggest that although germline SDHB mutations are an important cause of phaeochromocytoma susceptibility, somatic inactivation of SDHB does not have a major role in sporadic neural crest tumours and SDHB is not the target of 1p36 allele loss in neuroblastoma and phaeochromocytoma.
  •  
10.
  • Carén, Helena, 1979, et al. (författare)
  • A cluster of genes located in 1p36 are down-regulated in neuroblastomas with poor prognosis, but not due to CpG island methylation.
  • 2005
  • Ingår i: Molecular cancer. - : Springer Science and Business Media LLC. - 1476-4598. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A common feature of neuroblastoma tumours are partial deletions of the short arm of chromosome 1 (1p-deletions). This is indicative of a neuroblastoma tumour suppressor gene being located in the region. Several groups including our have been studying candidate neuroblastoma genes in the region, but no gene/genes have yet been found that fulfil the criteria for being a neuroblastoma tumour suppressor. Since frequent mutations have not been detected, we have now analyzed the expression and promoter CpG island methylation status of the genes UBE4B, KIF1B, PGD, APITD1, DFFA and PEX14 in the 1p36.22 region in order to find an explanation for a possible down-regulation of this region. RESULTS: The current study shows that gene transcripts in high stage neuroblastoma tumours are significantly down-regulated compared to those in low stage tumours in the 1p36.22 region. CpG island methylation does not seem to be the mechanism of down-regulation for most of the genes tested, since no methylation was detected in the fragments analyzed. One exception is the CpG island of APITD1. Methylation of this gene is also seen in blood from control individuals and is therefore not believed to participate in tumour development. CONCLUSION: The genes UBE4B, KIF1B, PGD, APITD1, DFFA and PEX14 are down-regulated in high stage NB tumours, a feature that can not be explained by CpG island methylation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (20)
konferensbidrag (2)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Krona, Cecilia, 1976 (24)
Nelander, Sven (11)
Martinsson, Tommy, 1 ... (10)
Sjöberg, Rose-Marie, ... (8)
Ejeskär, Katarina, 1 ... (7)
Carén, Helena, 1979 (6)
visa fler...
Abel, Frida, 1974 (6)
Kogner, Per (3)
Rosén, Emil (3)
Hekmati, Neda (2)
Fransson, Susanne, 1 ... (2)
Englund, Elisabet (2)
Gallant, Caroline J. (2)
Siesjö, Peter (2)
Almstedt, Elin, 1988 ... (2)
Elgendy, Ramy (2)
Olsen, Thale Kristin (2)
Dyberg, Cecilia (2)
Doroszko, Milena (2)
Almstedt, Elin (2)
Jha, Preeti (1)
Bexell, Daniel (1)
Wickström, Malin (1)
Lehmann, Sören (1)
Larsson, Lars-Gunnar (1)
Jörnsten, Rebecka, 1 ... (1)
Nilsson, Staffan, 19 ... (1)
Kogner, P (1)
Hariri, Mehran (1)
Johnsen, JI (1)
Wickstrom, M (1)
Larsson, Ida (1)
Sundström, Anders (1)
Swartling, Fredrik J ... (1)
Alzrigat, Mohammad (1)
Mahmoud, Loay (1)
Bazzar, Wesam (1)
Påhlman, Sven (1)
Zhang, Fan (1)
Holmqvist, Bo (1)
Eng, C (1)
Persson, A. (1)
Jörnsten, Rebecka (1)
Northcott, Paul A. (1)
Östman, Arne (1)
Ekstrom, TJ (1)
Wärn, Caroline (1)
Arsenian Henriksson, ... (1)
Vanlandewijck, Micha ... (1)
Gloger, Marleen (1)
visa färre...
Lärosäte
Göteborgs universitet (14)
Uppsala universitet (13)
Chalmers tekniska högskola (9)
Karolinska Institutet (9)
Lunds universitet (4)
Stockholms universitet (1)
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy