SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kubicek S) "

Sökning: WFRF:(Kubicek S)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Muller, S, et al. (författare)
  • Target 2035 - update on the quest for a probe for every protein
  • 2022
  • Ingår i: RSC medicinal chemistry. - : Royal Society of Chemistry (RSC). - 2632-8682. ; 13:1, s. 13-21
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. Target 2035 aims to develop a pharmacological modulator for every protein in the human proteome to fill this gap.
  •  
2.
  • Wortman, J. R., et al. (författare)
  • The 2008 update of the Aspergillus nidulans genome annotation: A community effort
  • 2009
  • Ingår i: Fungal Genetics and Biology. - : Elsevier BV. - 1096-0937 .- 1087-1845. ; 46, s. S2-S13
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. (C) 2009 Elsevier Inc. All rights reserved.
  •  
3.
  • Andersen, M. R., et al. (författare)
  • Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88
  • 2011
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 21:6, s. 885-897
  • Tidskriftsartikel (refereegranskat)abstract
    • The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook wholegenome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Kjær, Kasper S., et al. (författare)
  • Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2'-bipyridine)2(CN)2]
  • 2017
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,20-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,20-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy)2(CN)2] undergoes ultrafast spin crossover to a metalcentered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)2(CN)2] complement prior measurement performed on [Fe(bpy)3]2+ and [Fe(bpy)(CN)4]2- in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy)N(CN)6-2N]2N-4, whereN=1-3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.
  •  
8.
  • Vester, Peter, et al. (författare)
  • Tracking structural solvent reorganization and recombination dynamics following e-photoabstraction from aqueous I-with femtosecond x-ray spectroscopy and scattering
  • 2022
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 157:22
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a sub-picosecond resolved investigation of the structural solvent reorganization and geminate recombination dynamics following 400 nm two-photon excitation and photodetachment of a valence p electron from the aqueous atomic solute, I-(aq). The measurements utilized time-resolved X-ray Absorption Near Edge Structure (TR-XANES) spectroscopy and X-ray Solution Scattering (TR-XSS) at the Linac Coherent Light Source x-ray free electron laser in a laser pump/x-ray probe experiment. The XANES measurements around the L1-edge of the generated nascent iodine atoms (I0) yield an average electron ejection distance from the iodine parent of 7.4 ± 1.5 Å with an excitation yield of about 1/3 of the 0.1M NaI aqueous solution. The kinetic traces of the XANES measurement are in agreement with a purely diffusion-driven geminate iodine-electron recombination model without the need for a long-lived (I0:e-) contact pair. Nonequilibrium classical molecular dynamics simulations indicate a delayed response of the caging H2O solvent shell and this is supported by the structural analysis of the XSS data: We identify a two-step process exhibiting a 0.1 ps delayed solvent shell reorganization time within the tight H-bond network and a 0.3 ps time constant for the mean iodine-oxygen distance changes. The results indicate that most of the reorganization can be explained classically by a transition from a hydrophilic cavity with a well-ordered first solvation shell (hydrogens pointing toward I-) to an expanded cavity around I0 with a more random orientation of the H2O molecules in a broadened first solvation shell.
  •  
9.
  • Zhang, Wenkai, et al. (författare)
  • Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution
  • 2016
  • Ingår i: Chemical Science. - 2041-6520. ; 8:1, s. 515-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. We conclude that the MLCT excited state of [Fe(CN)4(bpy)]2- decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2′-bipyridine)3]2+ by more than two orders of magnitude.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy