SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuffmeier M.) "

Sökning: WFRF:(Kuffmeier M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mancini, L., et al. (författare)
  • Physical properties and transmission spectrum of the WASP-74 planetary system from multiband photometry
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 485:4, s. 5168-5179
  • Tidskriftsartikel (refereegranskat)abstract
    • We present broad-band photometry of 11 planetary transits of the hot Jupiter WASP-74 b, using three medium-class telescopes and employing the telescope-defocusing technique. Most of the transits were monitored through I filters and one was simultaneously observed in five optical (U, g', r', i', z') and three near-infrared (J, H, K) passbands, for a total of 18 light curves. We also obtained new high-resolution spectra of the host star. We used these new data to review the orbital and physical properties of the WASP-74 planetary system. We were able to better constrain the main system characteristics, measuring smaller radius and mass for both the hot Jupiter and its host star than previously reported in the literature. Joining our optical data with those taken with the HST in the near infrared, we built up an observational transmission spectrum of the planet, which suggests the presence of strong optical absorbers, as TiO and VO gases, in its atmosphere.
  •  
2.
  • Jaimes, R. Figuera, et al. (författare)
  • Many new variable stars discovered in the core of the globular cluster NGC 6715 (M54) with EMCCD observations
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We show the benefits of using electron-multiplying CCDs and the shift-and-add technique as a tool to minimise the effects of atmospheric turbulence, such as blending between stars in crowded fields, and to avoid saturated stars in the fields observed. We intend to complete, or improve on, the census of the variable star population in globular cluster NGC 6715. Aims. Our aim is to obtain high-precision time-series photometry of the very crowded central region of this stellar system via the collection of better angular resolution images than has been previously achieved with conventional CCDs on ground-based telescopes. Methods. Observations were carried out using the Danish 1.54-m telescope at the ESO La Silla observatory in Chile. The telescope is equipped with an electron-multiplying CCD that enables short-exposure-time images to be obtained (ten images per second) that were stacked using the shift-and-add technique to produce the normal-exposure-time images (minutes). The high precision photometry was performed via difference image analysis employing the DanDIA pipeline. We attempted automatic detection of variable stars in the field. Results. We statistically analysed the light curves of 1405 stars in the crowded central region of NGC 6715 to automatically identify the variable stars present in this cluster. We found light curves for 17 previously known variable stars near the edges of our reference image (16 RR Lyrae and 1 semi-regular) and we discovered 67 new variables (30 RR Lyrae, 21 irregular (long-period type), 3 semi-regular, 1 W Virginis, 1 eclipsing binary, and 11 unclassified). Photometric measurements for these stars are available in electronic form through the Strasbourg Astronomical Data Centre.
  •  
3.
  • Kuffmeier, M., et al. (författare)
  • Linear dust polarization during the embedded phase of protostar formation: Synthetic observations of bridge structures
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring polarization from thermal dust emission can provide important constraints on the magnetic field structure around embedded protostars. However, interpreting the observations is challenging without models that consistently account for both the complexity of the turbulent protostellar birth environment and polarization mechanisms. Aims. We aim to provide a better understanding of dust polarization maps of embedded protostars with a focus on bridge-like structures such as the structure observed toward the protostellar multiple system IRAS 16293-2422 by comparing synthetic polarization maps of thermal reemission with recent observations. Methods. We analyzed the magnetic field morphology and properties associated with the formation of a protostellar multiple based on ideal magnetohydrodynamic 3D zoom-in simulations carried out with the » RAMSES code. To compare the models with observations, we postprocessed a snapshot of a bridge-like structure that is associated with a forming triple star system with the radiative transfer code » POLARIS and produced multiwavelength dust polarization maps. Results. The typical density in the most prominent bridge of our sample is about 10-16 g cm-3, and the magnetic field strength in the bridge is about 1 to 2 mG. Inside the bridge, the magnetic field structure has an elongated toroidal morphology, and the dust polarization maps trace the complex morphology. In contrast, the magnetic field strength associated with the launching of asymmetric bipolar outflows is significantly more magnetized (∼100 mG). At λ = 1.3 mm, and the orientation of the grains in the bridge is very similar for the case accounting for radiative alignment torques (RATs) compared to perfect alignment with magnetic field lines. However, the polarization fraction in the bridge is three times smaller for the RAT scenario than when perfect alignment is assumed. At shorter wavelength (λ 200 μm), however, dust polarization does not trace the magnetic field because other effects such as self-scattering and dichroic extinction dominate the orientation of the polarization. Conclusions. Compared to the launching region of protostellar outflows, the magnetic field in bridge-like structures is weak. Synthetic dust polarization maps of ALMA Bands 6 and 7 (1.3 mm and 870 μm, respectively) can be used as a tracer of the complex morphology of elongated toroidal magnetic fields associated with bridges.
  •  
4.
  • Kuffmeier, M., et al. (författare)
  • The bridge: a transient phenomenon of forming stellar multiples Sequential formation of stellar companions in filaments around young protostars
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Observations with modern instruments such as Herschel reveal that stars form clustered inside filamentary arms of similar to 1 pc length embedded in giant molecular clouds (GMCs). On smaller scales of similar to 1000 au, observations of IRAS 16293-2422, for example, show signs of filamentary "bridge" structures connecting young protostars to their birth environment. Aims. We aim to find the origin of bridges associated with deeply embedded protostars by characterizing their connection to the filamentary structure present on GMC scales and to the formation of protostellar multiples. Methods. Using the magnetohydrodynamical code RAMSES, we carried out zoom-in simulations of low-mass star formation starting from GMC scales. We analyzed the morphology and dynamics involved in the formation process of a triple system. Results. Colliding flows of gas in the filamentary arms induce the formation of two protostellar companions at distances of similar to 1000 au from the primary. After their birth, the stellar companions quickly approach, at Delta t similar to 10 kyr, and orbit the primary on eccentric orbits with separations of similar to 100 au. The colliding flows induce transient structures lasting for up to a few 10 kyr that connect two forming protostellar objects that are kinematically quiescent along the line-of-sight. Conclusions. Colliding flows compress gas and trigger the formation of stellar companions via turbulent fragmentation. Our results suggest that protostellar companions initially form with a wide separation of similar to 1000 au. Smaller separations of a less than or similar to 100 au are a consequence of subsequent migration and capturing. Associated with the formation phase of the companion, the turbulent environment induces the formation of arc- and bridge-like structures. These bridges can become kinematically quiescent when the velocity components of the colliding flows eliminate each other. However, the gas in bridges still contributes to stellar accretion later. Our results demonstrate that bridge-like structures are a transient phenomenon of stellar multiple formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy