SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuhlwilm Martin) "

Sökning: WFRF:(Kuhlwilm Martin)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bentley, Blair P., et al. (författare)
  • Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 120:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.
  •  
2.
  • Gao, Hong, et al. (författare)
  • The landscape of tolerated genetic variation in humans and primates
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648
  • Tidskriftsartikel (refereegranskat)abstract
    • Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
  •  
3.
  • Kuderna, Lukas F. K., et al. (författare)
  • A global catalog of whole-genome diversity from 233 primate species
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648, s. 906-913
  • Tidskriftsartikel (refereegranskat)abstract
    • The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage wholegenome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
  •  
4.
  • Kuderna, Lukas F. K., et al. (författare)
  • Identification of constrained sequence elements across 239 primate genomes
  • 2024
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 735-742
  • Tidskriftsartikel (refereegranskat)abstract
    • Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3,4,5,6,7,8,9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.
  •  
5.
  • Lindskog, Cecilia, et al. (författare)
  • Analysis of Candidate Genes for Lineage-Specific Expression Changes in Humans and Primates
  • 2014
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:8, s. 3596-3606
  • Tidskriftsartikel (refereegranskat)abstract
    • RUNX2, a gene involved in skeletal development, has previously been shown to be potentially affected by positive selection during recent human evolution. Here we have used antibody-based proteomics to characterize potential differences in expression patterns of RUNX2 interacting partners during primate evolution. Tissue microarrays consisting of a large set of normal tissues from human and macaque were used for protein profiling of 50 RUNX2 partners with immunohistochemistry. Eleven proteins (AR, CREBBP, EP300, FGF2, HDAC3, JUN, PRKD3, RUNX1, SATB2, TCF3, and YAP1) showed differences in expression between humans and macaques. These proteins were further profiled in tissues from chimpanzee, gorilla, and orangutan, and the corresponding genes were analyzed with regard to genomic features. Moreover, protein expression data were compared with previously obtained RNA sequencing data from six different organs. One gene (TCF3) showed significant expression differences between human and macaque at both the protein and RNA level, with higher expression in a subset of germ cells in human testis compared with macaque. In conclusion, normal tissues from macaque and human showed differences in expression of some RUNX2 partners that could be mapped to various defined cell types. The applied strategy appears advantageous to characterize the consequences of altered genes selected during evolution.
  •  
6.
  • Pawar, Harvinder, et al. (författare)
  • Ghost admixture in eastern gorillas
  • 2023
  • Ingår i: Nature Ecology & Evolution. - 2397-334X. ; 7:9, s. 1503-1514
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Pawar, Harvinder, et al. (författare)
  • Ghost admixture in eastern gorillas
  • 2023
  • Ingår i: Nature Ecology & Evolution. - : Springer Nature. - 2397-334X. ; 7:9, s. 1503-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • Archaic admixture has had a significant impact on human evolution with multiple events across different clades, including from extinct hominins such as Neanderthals and Denisovans into modern humans. Within the great apes archaic admixture has been identified in chimpanzees and bonobos, but the possibility of such events has not been explored in other species. Here, we address this question using high-coverage whole genome sequences from all four extant gorilla subspecies, including six newly sequenced eastern gorillas from previously unsampled geographic regions. Using Approximate Bayesian Computation (ABC) with neural networks to model the demographic history of gorillas, we find a signature of admixture from an archaic 'ghost' lineage into the common ancestor of eastern gorillas, but not western gorillas. We infer that up to 3% of the genome of these individuals is introgressed from an archaic lineage that diverged more than 3 million years ago from the common ancestor of all extant gorillas. This introgression event took place before the split of mountain and eastern lowland gorillas, likely more than 40 thousand years ago, and may have influenced perception of bitter taste in eastern gorillas. When comparing the introgression landscapes of gorillas, humans and bonobos, we find a consistent depletion of introgressed fragments on the X chromosome across these species. However, depletion in protein-coding content is not detectable in eastern gorillas, possibly as a consequence of stronger genetic drift in this species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy