SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuiken Thijs) "

Sökning: WFRF:(Kuiken Thijs)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jourdain, Elsa, et al. (författare)
  • The pattern of influenza virus attachment varies among wild bird species
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to attach to host cells is one of the main determinants of the host range of influenza A viruses. By using virus histochemistry, we investigate the pattern of virus attachment of both a human and an avian influenza virus in colon and trachea sections from 12 wild bird species. We show that significant variations exist, even between closely related avian species, which suggests that the ability of wild birds to serve as hosts for influenza viruses strongly varies among species. These results will prove valuable to assess the possibilities of interspecies transmission of influenza viruses in natural environments and better understand the ecology of influenza.
  •  
2.
  •  
3.
  •  
4.
  • van den Brand, Judith M. A., et al. (författare)
  • Wild ducks excrete highly pathogenic avian influenza virus H5N8 (2014-2015) without clinical or pathological evidence of disease
  • 2018
  • Ingår i: Emerging Microbes & Infections. - : Taylor & Francis. - 2222-1751. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly pathogenic avian influenza (HPAI) is essentially a poultry disease. Wild birds have traditionally not been involved in its spread, but the epidemiology of HPAI has changed in recent years. After its emergence in southeastern Asia in 1996, H5 HPAI virus of the Goose/Guangdong lineage has evolved into several sub-lineages, some of which have spread over thousands of kilometers via long-distance migration of wild waterbirds. In order to determine whether the virus is adapting to wild waterbirds, we experimentally inoculated the HPAI H5N8 virus clade 2.3.4.4 group A from 2014 into four key waterbird species-Eurasian wigeon (Anas penelope), common teal (Anas crecca), mallard (Anas platyrhynchos), and common pochard (Aythya ferina)-and compared virus excretion and disease severity with historical data of the HPAI H5N1 virus infection from 2005 in the same four species. Our results showed that excretion was highest in Eurasian wigeons for the 2014 virus, whereas excretion was highest in common pochards and mallards for the 2005 virus. The 2014 virus infection was subclinical in all four waterbird species, while the 2005 virus caused clinical disease and pathological changes in over 50% of the common pochards. In chickens, the 2014 virus infection caused systemic disease and high mortality, similar to the 2005 virus. In conclusion, the evidence was strongest for Eurasian wigeons as long-distance vectors for HPAI H5N8 virus from 2014. The implications of the switch in speciesspecific virus excretion and decreased disease severity may be that the HPAI H5 virus more easily spreads in the wildwaterbird population.
  •  
5.
  • Veldhuis Kroeze, Edwin J. B., et al. (författare)
  • Consecutive CT in vivo lung imaging as quantitative parameter of influenza vaccine efficacy in the ferret model
  • 2012
  • Ingår i: Vaccine. - : Elsevier. - 0264-410X .- 1873-2518. ; 30:51, s. 7391-7394
  • Tidskriftsartikel (refereegranskat)abstract
    • Preclinical vaccine efficacy studies are generally limited to certain read out parameters such as assessment of virus titers in swabs and organs, clinical signs, serum antibody titers, and pathological changes. These parameters are not always routinely applied and not always scheduled in a logical standardized way. We used computed tomography (CT) imaging as additional and novel read out parameter in a vaccine efficacy study by quantifying alterations in aerated lung volumes in ferrets challenged with the 2009 pandemic A/H1N1 influenza virus.Vaccination protected from marked variations in aerated lung volumes compared to naive controls. The vaccinated group showed a daily gradual mean reduction with a maximum of 7.8%, whereas the controls showed a maximum of 14.3% reduction. The pulmonary opacities evident on CT images were most pronounced in the placebo-treated controls, and corresponded to significantly increased relative lung weights at necropsy.This study shows that consecutive in vivo CT imaging allows for a day to day read out of vaccine efficacy by quantification of altered aerated lung volumes. 
  •  
6.
  • Verhagen, Josanne H., et al. (författare)
  • Epidemiology of influenza A virus among black-headed gulls, the Netherlands, 2006-2010.
  • 2014
  • Ingår i: Emerging Infectious Diseases. - : Centers for Disease Control and Prevention (CDC). - 1080-6040 .- 1080-6059. ; 20:1, s. 138-141
  • Tidskriftsartikel (refereegranskat)abstract
    • We sampled 7,511 black-headed gulls for influenza virus in the Netherlands during 2006-2010 and found that subtypes H13 and H16 caused annual epidemics in fledglings on colony sites. Our findings validate targeted surveillance of wild waterbirds and clarify underlying factors for influenza virus emergence in other species.
  •  
7.
  •  
8.
  • Verhagen, Josanne H., et al. (författare)
  • Host Range of Influenza A Virus H1 to H16 in Eurasian Ducks Based on Tissue and Receptor Binding Studies
  • 2021
  • Ingår i: Journal of Virology. - : American Society of Microbiology. - 0022-538X .- 1098-5514. ; 95:6, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Dabbling and diving ducks partly occupy shared habitats but have been reported to play different roles in wildlife infectious disease dynamics. Influenza A virus (IAV) epidemiology in wild birds has been based primarily on surveillance programs focused on dabbling duck species, particularly mallard (Anas platyrhynchos). Surveillance in Eurasia has shown that in mallards, some subtypes are commonly (H1 to H7 and H10), intermediately (H8, H9, H11, and H12), or rarely (H13 to H16) detected, contributing to discussions on virus host range and reservoir competence. An alternative to surveillance in determining IAV host range is to study virus attachment as a determinant for infection. Here, we investigated the attachment patterns of all avian IAV subtypes (H1 to H16) to the respiratory and intestinal tracts of four dabbling duck species (Mareca and Anas spp.), two diving duck species (Aythya spp.), and chicken, as well as to a panel of 65 synthetic glycan structures. We found that IAV subtypes generally showed abundant attachment to colon of the Anas duck species, mallard, and Eurasian teal (Anas crecca), supporting the fecal-oral transmission route in these species. The reported glycan attachment profile did not explain the virus attachment patterns to tissues but showed significant attachment of duck-originated viruses to fucosylated glycan structures and H7 virus tropism for Neu5Gc-LN. Our results suggest that Anas ducks play an important role in the ecology and epidemiology of IAV. Further knowledge on virus tissue attachment, receptor distribution, and receptor binding specificity is necessary to understand the mechanisms underlying host range and epidemiology of IAV. IMPORTANCE Influenza A viruses (IAVs) circulate in wild birds worldwide. From wild birds, the viruses can cause outbreaks in poultry and sporadically and indirectly infect humans. A high IAV diversity has been found in mallards (Anas platyrhynchos), which are most often sampled as part of surveillance programs; meanwhile, little is known about the role of other duck species in IAV ecology and epidemiology. In this study, we investigated the attachment of all avian IAV hemagglutinin (HA) subtypes (H1 to H16) to tissues of six different duck species and chicken as an indicator of virus host range. We demonstrated that the observed virus attachment patterns partially explained reported field prevalence. This study demonstrates that dabbling ducks of the Anas genus are potential hosts for most IAV subtypes, including those infecting poultry. This knowledge is useful to target the sampling of wild birds in nature and to further study the interaction between IAVs and birds.
  •  
9.
  • Verhagen, Josanne H., et al. (författare)
  • Long-Term Effect of Serial Infections with H13 and H16 Low-Pathogenic Avian Influenza Viruses in Black-Headed Gulls.
  • 2015
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 89:22, s. 11507-11522
  • Tidskriftsartikel (refereegranskat)abstract
    • UNLABELLED: Infections of domestic and wild birds with low-pathogenic avian influenza viruses (LPAIVs) have been associated with protective immunity to subsequent infection. However, the degree and duration of immunity in wild birds from previous LPAIV infection, by the same or a different subtype, are poorly understood. Therefore, we inoculated H13N2 (A/black-headed gull/Netherlands/7/2009) and H16N3 (A/black-headed gull/Netherlands/26/2009) LPAIVs into black-headed gulls (Chroicocephalus ridibundus), their natural host species, and measured the long-term immune response and protection against one or two reinfections over a period of >1 year. This is the typical interval between LPAIV epizootics in wild birds. Reinfection with the same virus resulted in progressively less virus excretion, with complete abrogation of virus excretion after two infections for H13 but not H16. However, reinfection with the other virus affected neither the level nor duration of virus excretion. Virus excretion by immunologically naive birds did not differ in total levels of excreted H13 or H16 virus between first- and second-year birds, but the duration of H13 excretion was shorter for second-year birds. Furthermore, serum antibody levels did not correlate with protection against LPAIV infection. LPAIV-infected gulls showed no clinical signs of disease. These results imply that the epidemiological cycles of H13 and H16 in black-headed gulls are relatively independent from each other and depend mainly on infection of first-year birds.IMPORTANCE: Low-pathogenic avian influenza viruses (LPAIVs) circulate mainly in wild water birds but are occasionally transmitted to other species, including humans, where they cause subclinical to fatal disease. To date, the effect of LPAIV-specific immunity on the epidemiology of LPAIV in wild birds is poorly understood. In this study, we investigated the effect of H13 and H16 LPAIV infection in black-headed gulls on susceptibility and virus excretion of subsequent infection with the same or the other virus within the same breeding season and between breeding seasons. These are the only two LPAIV hemagglutinin subtypes predominating in this species. The findings suggest that H13 and H16 LPAIV cycles in black-headed gull populations are independent of each other, indicate the importance of first-year birds in LPAIV epidemiology, and emphasize the need for alternatives to avian influenza virus (AIV)-specific serum antibodies as evidence of past LPAIV infection and correlates of protection against LPAIV infection in wild birds.
  •  
10.
  • Wille, Michelle, et al. (författare)
  • Infected or not : are PCR-positive oropharyngeal swabs indicative of low pathogenic influenza A virus infection in the respiratory tract of Mallard Anas platyrhynchos?
  • 2014
  • Ingår i: Veterinary research (Print). - : Springer Science and Business Media LLC. - 0928-4249 .- 1297-9716. ; 45, s. Article ID: 53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Detection of influenza virus in oropharyngeal swabs collected during wild bird surveillance is assumed to representrespiratory infection, although intestine is the main site of infection. We tested this assumption by histologicalexamination of the respiratory tract of wild Mallards with virus-positive oropharyngeal swabs. Thirty-two of 125Mallards tested had viral-RNA positive oropharyngeal swabs. The respiratory tracts of four Mallards with the mostvirus were examined in detail by immunohistochemistry. None had detectable virus antigen in the respiratory tract,suggesting it was not infected. An alternative explanation is that the oropharynx was contaminated with virusthrough feeding in surface water or through preening.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy