SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuiper Raoul V.) "

Sökning: WFRF:(Kuiper Raoul V.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrefelt, Asa, et al. (författare)
  • Fluorescence labeled microbubbles for multimodal imaging
  • 2015
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 464:3, s. 737-742
  • Tidskriftsartikel (refereegranskat)abstract
    • Air-filled polyvinyl alcohol microbubbles (PVA-MBs) were recently introduced as a contrast agent for ultrasound imaging. In the present study, we explore the possibility of extending their application in multimodal imaging by labeling them with a near infrared (NIR) fluorophore, VivoTag-680. PVA-MBs were injected intravenously into FVB/N female mice and their dynamic biodistribution over 24 h was determined by 3D-fluorescence imaging co-registered with 3D-mu CT imaging, to verify the anatomic location. To further confirm the biodistribution results from in vivo imaging, organs were removed and examined histologically using bright field and fluorescence microscopy. Fluorescence imaging detected PVA-MB accumulation in the lungs within the first 30 min post-injection. Redistribution to a low extent was observed in liver and kidneys at 4 h, and to a high extent mainly in the liver and spleen at 24 h. Histology confirmed PVA-MB localization in lung capillaries and macrophages. In the liver, they were associated with Kupffer cells; in the spleen, they were located mostly within the marginal-zone. Occasional MBs were observed in the kidney glomeruli and interstitium. The potential application of PVA-MBs as a contrast agent was also studied using ultrasound (US) imaging in subcutaneous and orthotopic pancreatic cancer mouse models, to visualize blood flow within the tumor mass. In conclusion, this study showed that PVA-MBs are useful as a contrast agent for multimodal imaging. (C) 2015 Elsevier Inc. All rights reserved.
  •  
2.
  • Shaker, Kian, et al. (författare)
  • Longitudinal In-Vivo X-Ray Fluorescence Computed Tomography With Molybdenum Nanoparticles
  • 2020
  • Ingår i: IEEE Transactions on Medical Imaging. - : Institute of Electrical and Electronics Engineers (IEEE). - 0278-0062 .- 1558-254X. ; 39:12, s. 3910-3919
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray fluorescence computed tomography (XFCT) with nanoparticles (NPs) as contrast agents shows potential for molecular biomedical imaging with higher spatial resolution than present methods. To date the technique has been demonstrated on phantoms and mice, however, parameters such as radiation dose, exposure times and sensitivity have not yet allowed for high-spatial-resolution in vivo longitudinal imaging, i.e., imaging of the same animal at different time points. Here we show in vivo XFCT with spatial resolution in the 200-400 mu m range in a proof-of-principle longitudinal study where mice are imaged five times each during an eight-week period following tail-vein injection of NPs. We rely on a 24 keV x-ray pencil-beam-based excitation of in-house-synthesized molybdenum oxide NPs (MoO2) to provide the high signal-to-background x-ray fluorescence detection necessary for XFCT imaging with low radiation dose and short exposure times. We quantify the uptake and clearance of NPs in vivo through imaging, and monitor animal well-being over the course of the study with support from histology and DNA stability analysis to assess the impact of x-ray exposure and NPs on animal welfare. We conclude that the presented imaging arrangement has potential for in vivo longitudinal studies, putting emphasis on designing biocompatible NPs as the future focus for active-targeting preclinical XFCT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy