SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kukat C.) "

Sökning: WFRF:(Kukat C.)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cossarizza, A., et al. (författare)
  • Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  • 2019
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 49:10, s. 1457-1973
  • Tidskriftsartikel (refereegranskat)abstract
    • These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  •  
2.
  • Nelson, G., et al. (författare)
  • QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy
  • 2021
  • Ingår i: Journal of Microscopy. - : Wiley. - 0022-2720 .- 1365-2818. ; 284:1, s. 56-73
  • Tidskriftsartikel (refereegranskat)abstract
    • A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
  •  
3.
  • Boehm, U., et al. (författare)
  • QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy
  • 2021
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; :18, s. 1423-1426
  • Tidskriftsartikel (refereegranskat)abstract
    • The community-driven initiative Quality Assessment and Reproducibility for Instruments & Images in Light Microscopy (QUAREP-LiMi) wants to improve reproducibility for light microscopy image data through quality control (QC) management of instruments and images. It aims for a common set of QC guidelines for hardware calibration and image acquisition, management and analysis.
  •  
4.
  • Kukat, C., et al. (författare)
  • Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:36, s. 11288-11293
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian mitochondrial DNA (mtDNA) is packaged by mitochondrial transcription factor A (TFAM) into mitochondrial nucleoids that are of key importance in controlling the transmission and expression of mtDNA. Nucleoid ultrastructure is poorly defined, and therefore we used a combination of biochemistry, super-resolution microscopy, and electron microscopy to show that mitochondrial nucleoids have an irregular ellipsoidal shape and typically contain a single copy of mtDNA. Rotary shadowing electron microscopy revealed that nucleoid formation in vitro is a multistep process initiated by TFAM aggregation and cross-strand binding. Superresolution microscopy of cultivated cells showed that increased mtDNA copy number increases nucleoid numbers without altering their sizes. Electron cryo-tomography visualized nucleoids at high resolution in isolated mammalian mitochondria and confirmed the sizes observed by superresolution microscopy of cell lines. We conclude that the fundamental organizational unit of the mitochondrial nucleoid is a single copy of mtDNA compacted by TFAM, and we suggest a packaging mechanism.
  •  
5.
  • Terzioglu, M., et al. (författare)
  • MTERF1 Binds mtDNA to Prevent Transcriptional Interference at the Light-Strand Promoter but Is Dispensable for rRNA Gene Transcription Regulation
  • 2013
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 17:4, s. 618-626
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial transcription termination factor 1, MTERF1, has been reported to couple rRNA gene transcription initiation with termination and is therefore thought to be a key regulator of mammalian mitochondrial ribosome biogenesis. The prevailing model is based on a series of observations published over the last two decades, but no in vivo evidence exists to show that MTERF1 regulates transcription of the heavy-strand region of mtDNA containing the rRNA genes. Here, we demonstrate that knockout of Mterf1 in mice has no effect on mitochondrial rRNA levels or mitochondrial translation. Instead, loss of Mterf1 influences transcription initiation at the light-strand promoter, resulting in a decrease of de novo transcription manifested as reduced 7S RNA levels. Based on these observations, we suggest that MTERF1 does not regulate heavy-strand transcription, but rather acts to block transcription on the opposite strand of mtDNA to prevent transcription interference at the light-strand promoter.
  •  
6.
  • Kaspar, S, et al. (författare)
  • Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR
  • 2021
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon mitochondrial dysfunction, CHOP acts as a rheostat that attenuates prolonged stress and delays the onset of cardiomyopathy.
  •  
7.
  • Kuhl, I, et al. (författare)
  • POLRMT does not transcribe nuclear genes
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 514:7521, s. E7-E11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy