SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kulbacka Ortiz K.) "

Sökning: WFRF:(Kulbacka Ortiz K.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ortiz Catalan, Max Jair, 1982, et al. (författare)
  • Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain
  • 2016
  • Ingår i: The Lancet. - : Elsevier BV. - 1474-547X .- 0140-6736. ; 388:10062, s. 2885-2894
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Phantom limb pain is a debilitating condition for which no eff ective treatment has been found. We hypothesised that re-engagement of central and peripheral circuitry involved in motor execution could reduce phantom limb pain via competitive plasticity and reversal of cortical reorganisation. Methods Patients with upper limb amputation and known chronic intractable phantom limb pain were recruited at three clinics in Sweden and one in Slovenia. Patients received 12 sessions of phantom motor execution using machine learning, augmented and virtual reality, and serious gaming. Changes in intensity, frequency, duration, quality, and intrusion of phantom limb pain were assessed by the use of the numeric rating scale, the pain rating index, the weighted pain distribution scale, and a study-specifi c frequency scale before each session and at follow-up interviews 1, 3, and 6 months after the last session. Changes in medication and prostheses were also monitored. Results are reported using descriptive statistics and analysed by non-parametric tests. The trial is registered at ClinicalTrials. gov, number NCT02281539. Findings Between Sept 15, 2014, and April 10, 2015, 14 patients with intractable chronic phantom limb pain, for whom conventional treatments failed, were enrolled. After 12 sessions, patients showed statistically and clinically signifi cant improvements in all metrics of phantom limb pain. Phantom limb pain decreased from pre-treatment to the last treatment session by 47% (SD 39; absolute mean change 1 . 0 [0 . 8]; p= 0 . 001) for weighted pain distribution, 32% (38; absolute mean change 1 . 6 [1 . 8]; p= 0 . 007) for the numeric rating scale, and 51% (33; absolute mean change 9 . 6 [8 . 1]; p= 0 . 0001) for the pain rating index. The numeric rating scale score for intrusion of phantom limb pain in activities of daily living and sleep was reduced by 43% (SD 37; absolute mean change 2 . 4 [2 . 3]; p= 0 . 004) and 61% (39; absolute mean change 2 . 3 [1 . 8]; p= 0 . 001), respectively. Two of four patients who were on medication reduced their intake by 81% (absolute reduction 1300 mg, gabapentin) and 33% (absolute reduction 75 mg, pregabalin). Improvements remained 6 months after the last treatment. Interpretation Our fi ndings suggest potential value in motor execution of the phantom limb as a treatment for phantom limb pain. Promotion of phantom motor execution aided by machine learning, augmented and virtual reality, and gaming is a non-invasive, non-pharmacological, and engaging treatment with no identified side-effects at present.
  •  
2.
  • Lendaro, Eva, 1989, et al. (författare)
  • Phantom motor execution as a treatment for phantom limb pain: Protocol of an international, double-blind, randomised controlled clinical trial
  • 2018
  • Ingår i: BMJ Open. - : BMJ. - 2044-6055 .- 2044-6055. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Phantom limb pain (PLP) is a chronic condition that can greatly diminish quality of life. Control over the phantom limb and exercise of such control have been hypothesised to reverse maladaptive brain changes correlated to PLP. Preliminary investigations have shown that decoding motor volition using myoelectric pattern recognition, while providing real-time feedback via virtual and augmented reality (VR-AR), facilitates phantom motor execution (PME) and reduces PLP. Here we present the study protocol for an international (seven countries), multicentre (nine clinics), double-blind, randomised controlled clinical trial to assess the effectiveness of PME in alleviating PLP. Methods and analysis Sixty-seven subjects suffering from PLP in upper or lower limbs are randomly assigned to PME or phantom motor imagery (PMI) interventions. Subjects allocated to either treatment receive 15 interventions and are exposed to the same VR-AR environments using the same device. The only difference between interventions is whether phantom movements are actually performed (PME) or just imagined (PMI). Complete evaluations are conducted at baseline and at intervention completion, as well as 1, 3 and 6 months later using an intention-to-treat (ITT) approach. Changes in PLP measured using the Pain Rating Index between the first and last session are the primary measure of efficacy. Secondary outcomes include: Frequency, duration, quality of pain, intrusion of pain in activities of daily living and sleep, disability associated to pain, pain self-efficacy, frequency of depressed mood, presence of catastrophising thinking, health-related quality of life and clinically significant change as patient's own impression. Follow-up interviews are conducted up to 6 months after the treatment. Ethics and dissemination The study is performed in agreement with the Declaration of Helsinki and under approval by the governing ethical committees of each participating clinic. The results will be published according to the Consolidated Standards of Reporting Trials guidelines in a peer-reviewed journal.
  •  
3.
  •  
4.
  •  
5.
  • Hagberg, Kerstin, 1957, et al. (författare)
  • A 15-year follow-up of transfemoral amputees with bone-anchored transcutaneous prostheses. Mechanical complications and patient-reported outcomes
  • 2020
  • Ingår i: Bone & Joint Journal. - 2049-4394. ; 102B:1, s. 55-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The aim of this study was to describe implant and patient-reported outcome in patients with a unilateral transfemoral amputation (TFA) treated with a bone-anchored, transcutaneous prosthesis. Patients and Methods In this cohort study, all patients with a unilateral TFA treated with the Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) implant system in Sahlgrenska University Hospital, Gothenburg, Sweden, between January 1999 and December 2017 were included. The cohort comprised 111 patients (78 male (70%)), with a mean age 45 years (17 to 70). The main reason for amputation was trauma in 75 (68%) and tumours in 23 (21%). Patients answered the Questionnaire for Persons with Transfemoral Amputation (Q-TFA) before treatment and at two, five, seven, ten, and 15 years' follow-up. A prosthetic activity grade was assigned to each patient at each timepoint. All mechanical complications, defined as fracture, bending, or wear to any part of the implant system resulting in removal or change, were recorded. Results The Q-TFA scores at two, five, seven, and ten years showed significantly more prosthetic use, better mobility, fewer problems, and an improved global situation, compared with baseline. The survival rate of the osseointegrated implant part (the fixture) was 89% and 72% after seven and 15 years, respectively. A total of 61 patients (55%) had mechanical complications (mean 3.3 (SD 5.76)), resulting in exchange of the percutaneous implant parts. There was a positive relationship between a higher activity grade and the number of mechanical complications. Conclusion Compared with before treatment, the patient-reported outcome was significantly better and remained so over time. Although osseointegration and the ability to transfer loads over a 15-year period have been demonstrated, a large number of mechanical failures in the external implant parts were found. Since these were related to higher activity, restrictions in activity and improvements to the mechanical properties of the implant system are required.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy