SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kullen A.) "

Sökning: WFRF:(Kullen A.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kullen, A., et al. (författare)
  • Plasma transport along discrete auroral arcs and its contribution to the ionospheric plasma convection
  • 2008
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:11, s. 3279-3293
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of intense high-altitude electric field (E-field) peaks for large-scale plasma convection is investigated with the help of Cluster E-field, B-field and density data. The study covers 32 E-field events between 4 and 7 R-E geocentric distance, with E-field magnitudes in the range 500 1000 mV/m when mapped to ionospheric altitude. We focus on E-field structures above the ionosphere that are typically coupled to discrete auroral arcs and their return current region. Connected to such E-field peaks are rapid plasma flows directed along the discrete arcs in opposite directions on each side of the arc. Nearly all the E-field events occur during active times. A strong dependence on different substorm phases is found: a majority of intense E-field events appearing during substorm expansion or maximum phase are located on the night-side oval, while most recovery events occur on the dusk-to-dayside part of the oval. For most expansion and maximum phase cases, the average background plasma flow is in the sunward direction. For a majority of recovery events, the flow is in the anti-sunward direction. The net plasma flux connected to a strong E-field peak is in two thirds of the cases in the same direction as the background plasma flow. However, in only one third of the cases the strong flux caused by an E-field peak makes an important contribution to the plasma transport within the boundary plasma sheet. For a majority of events, the area covered by rapid plasma flows above discrete arcs is too small to have an effect on the global convection. This questions the role of discrete auroral arcs as major driver of plasma convection.
  •  
2.
  • Hill, S. C., et al. (författare)
  • Magnetospheric Sources of Theta Aurora: A Case Study Comparing Observations With SWMF Global Simulation
  • 2024
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 51:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first high resolution global MHD with coupled inner magnetosphere simulation results of an observed theta aurora event. We use the Space Weather Modeling Framework in the Geospace configuration, which produces accurate field aligned current closure in the ionosphere that is integral to theta aurora formation. At the location of the observed theta aurora, the simulation produces a narrow channel of Joule heating along both open and closed field lines, and between a pair of oppositely directed field-aligned current sheets in the ionosphere. We demonstrate that this Joule heating pattern that we identify as theta aurora maps to a reconnection region at the magnetotail flanks as well as in the distant magnetotail. The theta aurora maps to a cross-tail current disruption and field-aligned current source region in a highly twisted magnetotail.
  •  
3.
  • Kullen, A., et al. (författare)
  • Seasonal dependence and solar wind control of transpolar arc luminosity
  • 2008
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 113:A8
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of the solar wind and the interplanetary magnetic field (IMF) on the luminosity of transpolar arcs (TPAs) is examined by taking into account seasonal effects. The study focuses on those transpolar arcs that appear after an IMF By sign change during steady northward IMF. It includes 21 northern hemisphere events identified in a previous study from global UV images taken by the Polar spacecraft between 1996 and 2000. Sorting the TPA events by sign of the Earth dipole tilt we find that the TPAs which appear in the dark hemisphere are on average much weaker than TPAs in the sunlit hemisphere. For the dark hemisphere events, no clear correlation between solar wind parameters and TPA luminosity is found. However, in the sunlit hemisphere, a clear dependence on solar wind and IMF conditions is seen. The TPA brightness is strongly influenced by IMF magnitude, northward IMF Bz and solar wind speed. A weak, negative correlation with the ion density is found. The TPA luminosity in the sunlit hemisphere is much more strongly controlled by the magnetic energy flux than by the kinetic energy flux of the solar wind. This explains the absence of transpolar arcs for the two By sign change cases for positive dipole tilts with lowest magnetic energy flux values. The strong influence of the Earth dipole tilt on the transpolar arc luminosity appears due to the dependence of the ionospheric conductivity on solar EUV emissions.
  •  
4.
  • Kullen, A., et al. (författare)
  • Solar wind dependence of the occurrence and motion of polar auroral arcs : A statistical study
  • 2002
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 107:A11
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Polar UV images from a 3-month period in winter 1998-1999 are used for a statistical study of polar arcs. The study covers all auroral arcs that are located poleward of the northern auroral oval, and which are detectable by the UV imager. The arcs are examined with respect to their spatial and temporal behavior as well as to a possible connection to solar wind parameters using ACE satellite data. It is found that the majority of polar arcs appear during northward IMF, strong IMF magnitude, and high solar wind speed. A modified Akasofu-Perreault epsilon parameter with a cosine function instead of a sine function (nuB(2) cos(4) (theta/2)(l(0)(2)/mu(0))) combines these results. It correlates well with the occurrence frequency of polar arcs for long timescales. The location of polar arcs is strongly dependent on the sign of the IMF B-y component. Static polar arcs occur in the Northern Hemisphere on the dawn (dusk) side of the oval for negative (positive) IMF B-y, whereas poleward-moving arcs separate from the opposite side of the oval, and then move in the direction of IMF B-y. All polar arcs are sorted into five different categories according to their spatial structure and evolution: oval-aligned, bending, moving, midnight, and multiple arcs. Each polar arc type occurs for a characteristic combination of solar wind parameters. IMF clock angle changes seem to have a strong influence on what type of arc occurs. Oval-aligned arcs appear mainly during steady IMF, bending arcs after an IMF B-z sign change, and moving arcs after an IMF B-y sign change. For the rare midnight and multiple arc events, no characteristic IMF clock angle dependence has been found. The different types of clear polar arcs are discussed in the context of existing observational studies and transpolar arc models.
  •  
5.
  • Pitkänen, Timo, 1979-, et al. (författare)
  • Statistical Survey of Magnetic Forces Associated With Earthward Bursty Bulk Flows Measured by MMS 2017-2021
  • 2023
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the magnetic forces (the magnetic pressure gradient force, the curvature force, and their sum the j x B-force) associated with earthward bursty bulk flows (BBFs) using Magnetospheric Multiscale (MMS) data from five tail seasons (2017-2021). For the first time, the magnetic forces are inferred downtail of XGSM = -20 R-E and in the GSM XY and YZ planes. The results suggest that BBFs tend to be accelerated earthward by the magnetic pressure gradient force tailward of similar to 19 R-E and decelerated closer to that distance in the 2017-2018 data. The force magnitudes increase with distance. This is in accordance with earlier Cluster results. In the 2019-2021 data, the pressure gradient force magnitudes are generally smaller and no clear distance for the acceleration reversal can be determined. The curvature forces for both 2017-2018 and 2019-2021 BBFs indicate earthward acceleration independent of distance, consistent with the Cluster measurements. The sum, the j x B-force, suggests for the 2017-2018 BBFs earthward acceleration tailward of XGSM similar to 15 R-E and deceleration within that distance, also consistent with Cluster. In contrast, the 2019-2021 BBFs show general earthward acceleration by j x B independent of distance. In the GSM XY plane, the average (j x B)(xy) vectors are earthward, and in the premidnight and postmidnight dawnward for the 2017-2018 BBFs. For 2019-2021, the average (j x B)(xy) vectors have components toward the tail center. In the GSM YZ plane, the average (j x B)(yz) vectors are toward the neutral sheet.
  •  
6.
  • Carter, J. A., et al. (författare)
  • Dayside reconnection under interplanetary magnetic field B-y-dominated conditions : The formation and movement of bending arcs
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:4, s. 2967-2978
  • Tidskriftsartikel (refereegranskat)abstract
    • Based upon a survey of global auroral images collected by the Polar Ultraviolet Imager, Kullen etal. (2002) subdivided polar cap auroral arcs into a number of categories, including that of bending arcs. We are concerned with those bending arcs that appear as a bifurcation of the dayside auroral oval and which subsequently form a spur intruding into the polar cap. Once formed, the spur moves poleward and antisunward over the lifetime of the arc. We propose that dayside bending arcs are ionospheric signatures of pulses of dayside reconnection and are therefore part of a group of transient phenomena associated with flux transfer events. We observe the formation and subsequent motion of a bending arc across the polar cap during a 30 min interval on 8 January 1999, and we show that this example is consistent with the proposed model. We quantify the motion of the arc and find it to be commensurate with the convection flows observed by both ground-based radar observations and space-based particle flow measurements. In addition, precipitating particles coincident with the arc appear to occur along open field lines, lending further support to the model.
  •  
7.
  • Cumnock, Judy A., et al. (författare)
  • Small-scale characteristics of extremely high latitude aurora
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:9, s. 3335-3347
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine 14 cases of an interesting type of extremely high latitude aurora as identified in the precipitating particles measured by the DMSP F13 satellite. In particular we investigate structures within large-scale arcs for which the particle signatures are made up of a group of multiple distinct thin arcs. These cases are chosen without regard to IMF orientation and are part of a group of 87 events where DMSP F13 SSJ/4 measures emissions which occur near the noon-midnight meridian and are spatially separated from both the dawnside and duskside auroral ovals by wide regions with precipitating particles typical of the polar cap. For 73 of these events the high-latitude aurora consists of a continuous region of precipitating particles. We focus on the remaining 14 of these events where the particle signatures show multiple distinct thin arcs. These events occur during northward or weakly southward IMF conditions and follow a change in IMF B-y. Correlations are seen between the field-aligned currents and plasma flows associated with the arcs, implying local closure of the FACs. Strong correlations are seen only in the sunlit hemisphere. The convection associated with the multiple thin arcs is localized and has little influence on the large-scale convection. This also implies that the sunward flow along the arcs is unrelated to the overall ionospheric convection.
  •  
8.
  • Dellve, L, et al. (författare)
  • Lean i hälso- och sjukvården
  • 2013
  • Ingår i: Lean i arbetslivet. - Stockholm : Liber. - 9789147105601 ; , s. 142-161
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
9.
  • Fryer, L. J., et al. (författare)
  • 3D GUMICS Simulations of Northward IMF Magnetotail Structure
  • 2023
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:8
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents a re-evaluation of the Kullen and Janhunen (2004, https://doi.org/10.5194/angeo-22-951-2004) global northward interplanetary magnetic field (IMF) simulation, using the Grand Unified Magnetosphere–Ionosphere Coupling Simulation version 4 (GUMICS-4), a global MHD model. We investigate the dynamic coupling between northward IMF conditions and the Earth’s magnetotail and compare the results to observation-based mechanisms for the formation of transpolar arcs. The results of this study reveal that under northward IMF conditions (and northward IMF initialization), a large closed field line region forms in the magnetotail, with similarities to transpolar arc structures observed from spacecraft data. This interpretation is supported by the simultaneous increase of closed flux measured in the magnetotail. However, the reconnection configuration differs in several respects from previously theorized magnetotail structures that have been inferred from both observations and simulations results and associated with transpolar arcs. We observe that dawn–dusk lobe regions form as a result of high-latitude reconnection during the initialization stages, which later come into contact as the change in the IMF By component causes the magnetotail to twist. We conclude that in the GUMICS simulation, transpolar arc-like structures are formed as a result of reconnection in the magnetotail, rather than high-latitude reconnection or due to the mapping of the plasma sheet through a twisted magnetotail as interpreted from previous analysis of GUMICS simulations.
  •  
10.
  • Karlsson, Tomas, et al. (författare)
  • Isolated magnetic field structures in Mercury's magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets
  • 2016
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 129, s. 61-73
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated MESSENGER magnetic field data from the Mercury magnetosheath and near solar wind, to identify isolated magnetic field structures (defined as clear, isolated changes in the field magnitude). Their properties are studied in order to determine if they may be considered as analogues to plasmoids and jets known to exist in Earth's magnetosheath. Both isolated decreases of the magnetic field absolute value ('negative magnetic field structures') and increases ('positive structures') are found in the magnetosheath, whereas only negative structures are found in the solar wind. The similar properties of the solar wind and magnetosheath negative magnetic field structures suggests that they are analogous to diamagnetic plasmoids found in Earth's magnetosheath and near solar wind. The latter have earlier been identified with solar wind magnetic holes. Positive magnetic field structures are only found in the magnetosheath, concentrated to a region relatively close to the magnetopause. Their proximity to the magnetopause, their scale sizes, and the association of a majority of the structures with bipolar magnetic field signatures identify them as flux transfer events (which generally are associated with a decrease of plasma density in the magnetosheath). The positive magnetic field structures are therefore not likely to be analogous to terrestrial paramagnetic plasmoids but possibly to a sub-population of magnetosheath jets. At Earth, a majority of magnetosheath jets are associated with the quasi-parallel bow shock. We discuss some consequences of the findings of the present investigation pertaining to the different nature of the quasi-parallel bow shock at Mercury and Earth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy