SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kulmala Jenni) "

Sökning: WFRF:(Kulmala Jenni)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
2.
  • Beck, Lisa J., et al. (författare)
  • Differing Mechanisms of New Particle Formation at Two Arctic Sites
  • 2021
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 48:4
  • Tidskriftsartikel (refereegranskat)abstract
    • New particle formation in the Arctic atmosphere is an important source of aerosol particles. Understanding the processes of Arctic secondary aerosol formation is crucial due to their significant impact on cloud properties and therefore Arctic amplification. We observed the molecular formation of new particles from low-volatility vapors at two Arctic sites with differing surroundings. In Svalbard, sulfuric acid (SA) and methane sulfonic acid (MSA) contribute to the formation of secondary aerosol and to some extent to cloud condensation nuclei (CCN). This occurs via ion-induced nucleation of SA and NH3 and subsequent growth by mainly SA and MSA condensation during springtime and highly oxygenated organic molecules during summertime. By contrast, in an ice-covered region around Villum, we observed new particle formation driven by iodic acid but its concentration was insufficient to grow nucleated particles to CCN sizes. Our results provide new insight about sources and precursors of Arctic secondary aerosol particles.
  •  
3.
  • Junninen, Heikki, et al. (författare)
  • Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests
  • 2022
  • Ingår i: Communications Earth and Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosols and their interaction with clouds constitute the largest uncertainty in estimating the radiative forcing affecting the climate system. Secondary aerosol formation is responsible for a large fraction of the cloud condensation nuclei in the global atmosphere. Wetlands are important to the budgets of methane and carbon dioxide, but the potential role of wetlands in aerosol formation has not been investigated. Here we use direct atmospheric sampling at the Siikaneva wetland in Finland to investigate the emission of methane and volatile organic compounds, and subsequently formed atmospheric clusters and aerosols. We find that terpenes initiate stronger atmospheric new particle formation than is typically observed over boreal forests and that, in addition to large emissions of methane which cause a warming effect, wetlands also have a cooling effect through emissions of these terpenes. We suggest that new wetlands produced by melting permafrost need to be taken into consideration as sources of secondary aerosol particles when estimating the role of increasing wetland extent in future climate change.
  •  
4.
  • Kontkanen, Jenni, et al. (författare)
  • Exploring the potential of nano-Kohler theory to describe the growth of atmospheric molecular clusters by organic vapors using cluster kinetics simulations
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:18, s. 13733-13754
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric new particle formation (NPF) occurs by the formation of nanometer-sized molecular clusters and their subsequent growth to larger particles. NPF involving sulfuric acid, bases and oxidized organic compounds is an important source of atmospheric aerosol particles. One of the mechanisms suggested to depict this process is nano-Kohler theory, which describes the activation of inorganic molecular clusters to growth by a soluble organic vapor. In this work, we studied the capability of nano-Kohler theory to describe the initial growth of atmospheric molecular clusters by simulating the dynamics of a cluster population in the presence of a sulfuric acid-base mixture and an organic compound. We observed nano-Kohler-type activation in our simulations when the saturation ratio of the organic vapor and the ratio between organic and inorganic vapor concentrations were in a suitable range. However, nano-Kohler theory was unable to predict the exact size at which the activation occurred in the simulations. In some conditions, apparent cluster growth rate (GR) started to increase close to the activation size determined from the simulations. Nevertheless, because the behavior of GR is also affected by other dynamic processes, GR alone cannot be used to deduce the cluster growth mechanism.
  •  
5.
  • Kontkanen, Jenni, et al. (författare)
  • Growth of atmospheric clusters involving cluster-cluster collisions : comparison of different growth rate methods
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:9, s. 5545-5560
  • Tidskriftsartikel (refereegranskat)abstract
    • We simulated the time evolution of atmospheric cluster concentrations in a one-component system where not only do clusters grow by condensation of monomers, but cluster-cluster collisions also significantly contribute to the growth of the clusters. Our aim was to investigate the consistency of the growth rates of sub-3aEuro-nm clusters determined with different methods and the validity of the common approach to use them to estimate particle formation rates. We compared the growth rate corresponding to particle fluxes (FGR), the growth rate derived from the appearance times of clusters (AGR), and the growth rate calculated based on irreversible vapor condensation (CGR). We found that the relation between the different growth rates depends strongly on the external conditions and the properties of the model substance. The difference between the different growth rates was typically highest at the smallest, sub-2aEuro-nm sizes. FGR was generally lower than AGR and CGR; at the smallest sizes the difference was often very large, while at sizes larger than 2aEuro-nm the growth rates were closer to each other. AGR and CGR were in most cases close to each other at all sizes. The difference between the growth rates was generally lower in conditions where cluster concentrations were high, and evaporation and other losses were thus less significant. Furthermore, our results show that the conventional method used to determine particle formation rates from growth rates may give estimates far from the true values. Thus, care must be taken not only in how the growth rate is determined but also in how it is applied.
  •  
6.
  •  
7.
  • Kulmala, Markku, et al. (författare)
  • Direct Observations of Atmospheric Aerosol Nucleation
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6122, s. 943-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation-more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.
  •  
8.
  • Lampilahti, Janne, et al. (författare)
  • Zeppelin-led study on the onset of new particle formation in the planetary boundary layer
  • 2021
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:16, s. 12649-12663
  • Tidskriftsartikel (refereegranskat)abstract
    • We compared observations of aerosol particle formation and growth in different parts of the planetary boundary layer at two different environments that have frequent new particle formation (NPF) events. In summer 2012 we had a campaign in Po Valley, Italy (urban background), and in spring 2013 a similar campaign took place in Hyytiälä, Finland (rural background). Our study consists of three case studies of airborne and ground-based measurements of ion and particle size distribution from ∼1 nm. The airborne measurements were performed using a Zeppelin inside the boundary layer up to 1000 m altitude. Our observations show the onset of regional NPF and the subsequent growth of the aerosol particles happening almost uniformly inside the mixed layer (ML) in both locations. However, in Hyytiälä we noticed local enhancement in the intensity of NPF caused by mesoscale boundary layer (BL) dynamics. Additionally, our observations indicate that in Hyytiälä NPF was probably also taking place above the ML. In Po Valley we observed NPF that was limited to a specific air mass.
  •  
9.
  • Lehtipalo, Katrianne, et al. (författare)
  • Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
  • 2018
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 4:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOx suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.
  •  
10.
  • Lehtipalo, Katrianne, et al. (författare)
  • The effect of acid-base clustering and ions on the growth of atmospheric nano-particles
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (20)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Kulmala, Markku (13)
Kontkanen, Jenni (13)
Kerminen, Veli-Matti (10)
Lehtipalo, Katrianne (8)
Petäjä, Tuukka (8)
Kivipelto, Miia (7)
visa fler...
Kangasluoma, Juha (7)
Worsnop, Douglas R. (7)
Ehn, Mikael (7)
Riipinen, Ilona (6)
Bianchi, Federico (6)
Sipilä, Mikko (6)
Solomon, Alina (5)
Duplissy, Jonathan (5)
Hakala, Jani (5)
Nieminen, Tuomo (5)
Stigsdotter Neely, A ... (5)
Garmash, Olga (5)
Soininen, Hilkka (4)
Amorim, Antonio (4)
Donahue, Neil M. (4)
Flagan, Richard C. (4)
Hansel, Armin (4)
Jokinen, Tuija (4)
Junninen, Heikki (4)
Onnela, Antti (4)
Sarnela, Nina (4)
Schallhart, Simon (4)
Simon, Mario (4)
Tome, Antonio (4)
Curtius, Joachim (4)
Baltensperger, Urs (4)
Kirkby, Jasper (4)
Smith, James N. (4)
Törmäkangas, Timo (3)
Krejci, Radovan (3)
Kåreholt, Ingemar, 1 ... (3)
Sindi, Shireen (3)
Schobesberger, Siegf ... (3)
Dommen, Josef (3)
Mathot, Serge (3)
Olenius, Tinja (3)
Wimmer, Daniela (3)
Yli-Juuti, Taina (3)
Heikkinen, Liine (3)
Sipilä, Sarianna (3)
Vehkamäki, Hanna (3)
Lampilahti, Janne (3)
Leino, Katri (3)
Rissanen, Matti P. (3)
visa färre...
Lärosäte
Stockholms universitet (15)
Karolinska Institutet (7)
Jönköping University (5)
Karlstads universitet (5)
Luleå tekniska universitet (3)
Lunds universitet (2)
visa fler...
Göteborgs universitet (1)
Umeå universitet (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Medicin och hälsovetenskap (10)
Lantbruksvetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy