SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kumar Navinder 1988) "

Sökning: WFRF:(Kumar Navinder 1988)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gaur, D., et al. (författare)
  • Ydj1 interaction at nucleotide-binding-domain of yeast Ssa1 impacts Hsp90 collaboration and client maturation
  • 2022
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 18:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Hsp90 constitutes one of the major chaperone machinery in the cell. The Hsp70 assists Hsp90 in its client maturation though the underlying basis of the Hsp70 role remains to be explored. In the present study, using S. cerevisiae strain expressing Ssa1 as sole Ssa Hsp70, we identified novel mutations in the nucleotide-binding domain of yeast Ssa1 Hsp70 (Ssa1-T175N and Ssa1-D158N) that adversely affect the maturation of Hsp90 clients v-Src and Ste11. The identified Ssa1 amino acids critical for Hsp90 function were also found to be conserved across species such as in E.coli DnaK and the constitutive Hsp70 isoform (HspA8) in humans. These mutations are distal to the C-terminus of Hsp70, that primarily mediates Hsp90 interaction through the bridge protein Sti1, and proximal to Ydj1 (Hsp40 cochaperone of Hsp70 family) binding region. Intriguingly, we found that the bridge protein Sti1 is critical for cellular viability in cells expressing Ssa1-T175N (A1-T175N) or Ssa1-D158N (A1-D158N) as sole Ssa Hsp70. The growth defect was specific for sti1Δ, as deletion of none of the other Hsp90 co-chaperones showed lethality in A1-T175N or A1-D158N. Mass-spectrometry based whole proteome analysis of A1-T175N cells lacking Sti1 showed an altered abundance of various kinases and transcription factors suggesting compromised Hsp90 activity. Further proteomic analysis showed that pathways involved in signaling, signal transduction, and protein phosphorylation are markedly downregulated in the A1-T175N upon repressing Sti1 expression using doxycycline regulatable promoter. In contrast to Ssa1, the homologous mutations in Ssa4 (Ssa4-T175N/D158N), the stress inducible Hsp70 isoform, supported cell growth even in the absence of Sti1. Overall, our data suggest that Ydj1 competes with Hsp90 for binding to Hsp70, and thus regulates Hsp90 interaction with the nucleotide-binding domain of Hsp70. The study thus provides new insight into the Hsp70-mediated regulation of Hsp90 and broadens our understanding of the intricate complexities of the Hsp70-Hsp90 network.
  •  
2.
  • Vaid, Roshan, et al. (författare)
  • METTL3 drives telomere targeting of TERRA lncRNA through m6A-dependent R-loop formation: a therapeutic target for ALT-positive neuroblastoma
  • 2024
  • Ingår i: NUCLEIC ACIDS RESEARCH. - 0305-1048 .- 1362-4962.
  • Tidskriftsartikel (refereegranskat)abstract
    • Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N-6 position of internal adenosine (m(6)A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m(6)A/METTL3 results in telomere damage. We observed that m(6)A modification is abundant in R-loop enriched TERRA, and the m(6)A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m(6)A drives telomere targeting of TERRA via R-loops, and this m(6)A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB. [Graphical Abstract]
  •  
3.
  • Ahmadpour, Doryaneh, 1973, et al. (författare)
  • Syntaxin 5-dependent phosphorylation of the small heat shock protein Hsp42 and its role in protein quality control
  • 2023
  • Ingår i: Febs Journal. - 1742-464X. ; 290:19, s. 4744-4761
  • Tidskriftsartikel (refereegranskat)abstract
    • The small heat shock protein Hsp42 and the t-SNARE protein Sed5 have central roles in the sequestration of misfolded proteins into insoluble protein deposits in the yeast Saccharomyces cerevisiae. However, whether these proteins/processes interact in protein quality control (PQC) is not known. Here, we show that Sed5 and anterograde trafficking modulate phosphorylation of Hsp42 partially via the MAPK kinase Hog1. Such phosphorylation, specifically at residue S215, abrogated the co-localization of Hsp42 with the Hsp104 disaggregase, aggregate clearance, chaperone activity, and sequestration of aggregates to IPOD and mitochondria. Furthermore, we found that Hsp42 is hyperphosphorylated in old cells leading to a drastic failure in disaggregation. Old cells also displayed a retarded anterograde trafficking, which, together with slow aggregate clearance and hyperphosphorylation of Hsp42, could be counteracted by Sed5 overproduction. We hypothesize that the breakdown of proper PQC during yeast aging may, in part, be due to a retarded anterograde trafficking leading to hyperphosphorylation of Hsp42.
  •  
4.
  • Chawla, Srishti, 1986, et al. (författare)
  • Calcineurin stimulation by Cnb1p overproduction mitigates protein aggregation and α-synuclein toxicity in a yeast model of synucleinopathy
  • 2023
  • Ingår i: Cell Communication and Signaling. - 1478-811X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The calcium-responsive phosphatase, calcineurin, senses changes in Ca2+ concentrations in a calmodulin-dependent manner. Here we report that under non-stress conditions, inactivation of calcineurin signaling or deleting the calcineurin-dependent transcription factor CRZ1 triggered the formation of chaperone Hsp100p (Hsp104p)-associated protein aggregates in Saccharomyces cerevisiae. Furthermore, calcineurin inactivation aggravated α-Synuclein-related cytotoxicity. Conversely, elevated production of the calcineurin activator, Cnb1p, suppressed protein aggregation and cytotoxicity associated with the familial Parkinson’s disease-related mutant α-Synuclein A53T in a partly CRZ1-dependent manner. Activation of calcineurin boosted normal localization of both wild type and mutant α-synuclein to the plasma membrane, an intervention previously shown to mitigate α-synuclein toxicity in Parkinson’s disease models. The findings demonstrate that calcineurin signaling, and Ca2+ influx to the vacuole, limit protein quality control in non-stressed cells and may have implications for elucidating to which extent aberrant calcineurin signaling contributes to the progression of Parkinson’s disease(s) and other synucleinopathies. [MediaObject not available: see fulltext.].
  •  
5.
  • Josefson, Rebecca, et al. (författare)
  • The GET pathway is a major bottleneck for maintaining proteostasis in Saccharomyces cerevisiae
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A hallmark of aging in a variety of organisms is a breakdown of proteostasis and an ensuing accumulation of protein aggregates and inclusions. However, it is not clear if the proteostasis network suffers from a uniform breakdown during aging or if some distinct components act as bottlenecks especially sensitive to functional decline. Here, we report on a genome-wide, unbiased, screen for single genes in young cells of budding yeast required to keep the proteome aggregate-free under non-stress conditions as a means to identify potential proteostasis bottlenecks. We found that the GET pathway, required for the insertion of tail-anchored (TA) membrane proteins in the endoplasmic reticulum, is such a bottleneck as single mutations in either GET3, GET2 or GET1 caused accumulation of cytosolic Hsp104- and mitochondria-associated aggregates in nearly all cells when growing at 30 degrees C (non-stress condition). Further, results generated by a second screen identifying proteins aggregating in GET mutants and analyzing the behavior of cytosolic reporters of misfolding, suggest that there is a general collapse in proteostasis in GET mutants that affects other proteins than TA proteins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy