SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kumar Rahul 1978) "

Sökning: WFRF:(Kumar Rahul 1978)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumar, Ankit, et al. (författare)
  • Impact of the crystal orientation on spin-orbit torques in Fe/Pd bilayers
  • 2020
  • Ingår i: Journal of Physics D. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 53:35
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-orbit torques in ferromagnetic/non-magnetic heterostructures offer more energy-efficient means to realize spin-logic devices; however, their strengths are determined by the heterostructure interface. This work examines the impact of crystal orientation on the spin-orbit torque efficiency in different Fe/Pd bilayer systems. Results from spin torque ferromagnetic resonance measurements evidence that the damping-like torque efficiency is higher in epitaxial than in polycrystalline bilayer structures while the field-like torque is negligible in all bilayer structures. The strength of the damping-like torque decreases with deterioration of the bilayer epitaxial quality. The present finding provides fresh insight for the enhancement of spin-orbit torques in magnetic heterostructures.
  •  
2.
  • Kumar, Rahul, 1978, et al. (författare)
  • Systems biology: Developments and applications
  • 2014
  • Ingår i: Molecular Mechanisms in Yeast Carbon Metabolism. - Berlin, Heidelberg : Springer Berlin Heidelberg. - 9783642550133 ; , s. 83-96
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • © Springer-Verlag Berlin Heidelberg 2014. All rights are reserved. Systems biology relies on systems theory concepts and is applicable to both fundamental studies of cellular biology as well as applied research such as metabolic engineering. In this chapter, we map the context of systems biology developments and highlight its contribution in understanding the yeast carbon metabolism. Systems biology not only contributes towards the global overview of metabolism but also in combination with an integrative analysis approach facilitates the elucidation of molecular mechanisms. In particular we discuss the role of systems biology in unraveling the molecular details concerning glucose and galactose metabolism. In conclusion, this chapter provides an overview of the progress and impact of systems biology in carbon metabolism.
  •  
3.
  • Kumar, Rahul, 1978, et al. (författare)
  • Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures
  • 2011
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: It is important to understand the cellular responses emanating from environmental perturbations to redesign the networks for practical applications. In particular, the carbon (C) metabolism, nitrogen (N) assimilation, and energy generation are by far important, where those are interconnected and integrated to maintain cellular integrity. In our previous study, we investigated the effect of C/N ratio on the metabolic regulation of gdhA, glnL, glt B,D mutants as well as wild type Escherichia coli (Kumar and Shimizu, MCF, 1-17, 9:8,2010), where it was shown that the transcript levels of cyoA and cydB which encode the terminal oxidases, fnr and fur which encode global regulators were significantly up-regulated under N-limited condition as compared to C-limited condition. In the present study, therefore, the effects of such single-gene knockout on the metabolic regulation were investigated to clarify the roles of those genes in the aerobic continuous culture at the dilution rate of 0.2 h(-1). Results: The specific glucose consumption rates and the specific CO2 production rates of cyoA, cydB, fnr, and fur mutants were all increased as compared to the wild type under both C-limited and N-limited conditions. The former phenomenon was consistent with the up-regulations of the transcript levels of ptsG and ptsH, which are consistent with down-regulations of crp and mlc genes. Moreover, the increase in the specific glucose consumption rate was also caused by up-regulations of the transcript levels of pfkA, pykF and possibly zwf, where those are consistent with the down regulations of cra, crp and mlc genes. Moreover, the transcript levels of rpoN together with glnK, glnB, glnE were up-regulated, and thus the transcript levels of glnA, L, G, and gltB,D as well as nac were up-regulated, while gdhA was down-regulated. This implies the interconnection between cAMP-Crp and PII-Ntr systems. Moreover, cyoA, cydB, fnr and fur gene deletions up-regulated the transcript levels of respiration (nuoA, ndh, cyoA, cydB, and atpA) and the oxidative stress related genes such as soxR, S and sodA, where this was further enhanced under N-limitation. In the cases of cyoA and cydB mutants, arcA, fnr, fur, cydB (for cyoA mutant), and cyoA (for cydB mutant) genes were up-regulated, which may be due to incomplete oxidation of quinol. It was also shown that fur gene transcript level was up-regulated in accordance with the activation of respiratory chain genes. It was shown that the deletion of fur gene activated the enterobactin pathway. Conclusion: The present result demonstrated how the fermentation characteristics could be explained by the transcript levels of metabolic pathway genes as well as global regulators in relation to the knockout of such single genes as cyoA, cydB, fnr, and fur, and clarified the complex gene network regulation in relation to glycolysis, TCA cycle, respiration, and N-regulated pathways. The present result is quite important in understanding the metabolic regulation for metabolic engineering. Moreover, the present result may be useful in improving the specific glucose consumption rate and activation of the TCA cycle by modulating the respiratory chain genes and the related global regulators. The result obtained under N-limited condition may be useful for the heterologous protein production under N-limitation.
  •  
4.
  • Lahtvee, Petri-Jaan, 1985, et al. (författare)
  • Adaptation to different types of stress converge on mitochondrial metabolism
  • 2016
  • Ingår i: Molecular Biology of the Cell. - : American Society for Cell Biology. - 1059-1524 .- 1939-4586. ; 27:15, s. 2505-2514
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate-dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism.
  •  
5.
  • Malik, Rameez Saeed, 1987-, et al. (författare)
  • Ultrafast dynamics in Fe65Co35 alloys: Effect of Re doping
  • Annan publikation (populärvet., debatt m.m.)abstract
    • Soft magnetic FeCo alloys are of great interest due to their potential spintronics applications. The magnetic damping parameter plays a vital role in the performance of these spintronics devices. The Gilbert damping parameter increase in these alloys with doping of 5d elements. Here, we have investigated the effect of Re doping on the element-specific magnetization dynamics of Ru/Fe65Co35/Ru thin films using the time-resolved magneto-optical Kerr effect. When varying the concentration of Re from 0 to 12.6 %, no change of the demagnetization time constant is observed. However, a gradual change of the remagnetization time is observed with the increase of Re concentration. This remagnetization dynamics can be related to the Gilbert damping parameter of these films. An interesting  time-resolved dynamics at the Ru-edge is observed. A significant increase (40%) of the asymmetry signal is observed for the undoped sample and drops down with the Re doping. This effect is possibly a super diffusive spin current going from the magnetic layer to the non magnetic capping layer.
  •  
6.
  • Malik, Rameez Saeed, 1987-, et al. (författare)
  • Ultrafast magnetization dynamics in half-metallic Co2FeAl Heusler alloy
  • Annan publikation (populärvet., debatt m.m.)abstract
    • We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy Co2FeAl,probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to resultsfrom electronic structure theory and atomistic spin-dynamics simulations. Experimentally, we findthat the demagnetization time (τM) in films of Co2FeAl is almost independent of varying structuralorder, and that it is similar to that in elemental 3d ferromagnets. In contrast, the slower processof magnetization recovery, specified byτR, is found to occur on picosecond time scales, and isdemonstrated to correlate strongly with the Gilbert damping parameter (α). Our results showthat Co2FeAl is unique, in that it is the first material that clearly demonstrates the importance ofthe damping parameter in the remagnetization process. Based on these results we argue that for Co2FeAl the remagnetization process is dominated by magnon dynamics, something which mighthave general applicabilit
  •  
7.
  • Malik, Rameez Saeed, 1987-, et al. (författare)
  • Ultrafast magnetization dynamics in the half-metallic Heusler alloy Co2FeAl
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 104:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy Co2FeAl, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomistic spin-dynamics simulations. Experimentally, we find that the demagnetization time (tau(M)) in films of Co2FeAl is almost independent of varying structural order, and that it is similar to that in elemental 3d ferromagnets. In contrast, the slower process of magnetization recovery, specified by tau(R), is found to occur on picosecond time scales, and is demonstrated to correlate strongly with the Gilbert damping parameter (alpha). Based on these results we argue that for Co2FeAl the remagnetization process is dominated by magnon dynamics, something which might have general applicability.
  •  
8.
  • Zhang, Jie, 1981, et al. (författare)
  • Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae
  • 2011
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrient sensing and coordination of metabolic pathways are crucial functions for all living cells, but details of the coordination under different environmental conditions remain elusive. We therefore undertook a systems biology approach to investigate the interactions between the Snf1 and the target of rapamycin complex 1 (TORC1) in Saccharomyces cerevisiae. We show that Snf1 regulates a much broader range of biological processes compared with TORC1 under both glucose-and ammonium-limited conditions. We also find that Snf1 has a role in upregulating the NADP(+)-dependent glutamate dehydrogenase (encoded by GDH3) under derepressing condition, and therefore may also have a role in ammonium assimilation and amino-acid biosynthesis, which can be considered as a convergence of Snf1 and TORC1 pathways. In addition to the accepted role of Snf1 in regulating fatty acid (FA) metabolism, we show that TORC1 also regulates FA metabolism, likely through modulating the peroxisome and beta-oxidation. Finally, we conclude that direct interactions between Snf1 and TORC1 pathways are unlikely under nutrient-limited conditions and propose that TORC1 is repressed in a manner that is independent of Snf1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy