SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kumar Rohit) "

Sökning: WFRF:(Kumar Rohit)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Madhusudan, B. S., et al. (författare)
  • Critical assessment of furrow openers and operational parameters for optimum performance under conservation tillage
  • 2024
  • Ingår i: Scientific Reports. - : Nature Research. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Conservation Agriculture (CA) is an innovative approach that promotes sustainable farming while enhancing soil health. However, residue management challenges often hinder its adoption, causing farmers to burn crop leftovers in fields. This study aimed to evaluate the effectiveness of various furrow openers under simulated soil bin conditions. Three types of furrow openers were examined: single disk (SD), Inverted T-type furrow opener with a plain rolling coulter (ITRC), and double disc (DD) furrow opener. Tests were conducted at different forward speeds (1.5, 2, and 2.5 km h−1) and with three straw densities (1, 2, and 3 t ha−1) at a consistent working depth of 5 cm. Draft measurements were obtained using load cells connected to an Arduino-based data-logging system. Results indicated that draft requirements increased with forward speed and straw density, while straw-cutting efficiency decreased with these factors. Average draft values for SD, ITRC, and DD were 290.3 N, 420 N, and 368.5 N, respectively, and straw-cutting efficiencies were 53.62%, 59.47%, and 74.89%, respectively. The DD furrow opener showed the highest straw-cutting efficiency (81.36%) at a working speed of 1.5 km h−1 and a straw density of 1 t ha−1, demonstrating optimal performance compared to other furrow openers.
  •  
2.
  • Mahanti, Mukul, et al. (författare)
  • Ligand Sulfur Oxidation State Progressively Alters Galectin-3-Ligand Complex Conformations To Induce Affinity-Influencing Hydrogen Bonds
  • 2023
  • Ingår i: Journal of Medicinal Chemistry. - 1520-4804. ; 66:21, s. 14716-14723
  • Tidskriftsartikel (refereegranskat)abstract
    • Galectins play biological roles in immune regulation and tumor progression. Ligands with high affinity for the shallow, hydrophilic galectin-3 ligand binding site rely primarily on a galactose core with appended aryltriazole moieties, making hydrophobic interactions and π-stacking. We designed and synthesized phenyl sulfone, sulfoxide, and sulfide-triazolyl thiogalactoside derivatives to create affinity-enhancing hydrogen bonds, hydrophobic and π-interactions. Crystal structures and thermodynamic analyses revealed that the sulfoxide and sulfone ligands form hydrogen bonds while retaining π-interactions, resulting in improved affinities and unique binding poses. The sulfoxide, bearing one hydrogen bond acceptor, leads to an affinity decrease compared to the sulfide, whereas the corresponding sulfone forms three hydrogen bonds, two directly with Asn and Arg side chains and one water-mediated to an Asp side chain, respectively, which alters the complex structure and increases affinity. These findings highlight that the sulfur oxidation state influences both the interaction thermodynamics and structure.
  •  
3.
  • Sharma, Rohit, et al. (författare)
  • Analysis of Water Pollution Using Different Physicochemical Parameters : A Study of Yamuna River
  • 2020
  • Ingår i: Frontiers in Environmental Science. - USA : Frontiers Media S.A.. - 2296-665X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The Yamuna river has become one of the most polluted rivers in India as well as in the world because of the high-density population growth and speedy industrialization. The Yamuna river is severely polluted and needs urgent revival. The Yamuna river in Dehradun is polluted due to exceptional tourist activity, poor sewage facilities, and insufficient wastewater management amenities. The measurement of the quality can be done by water quality assessment. In this study, the water quality index has been calculated for the Yamuna river at Dehradun using monthly measurements of 12 physicochemical parameters. Trend forecasting for river water pollution has been performed using different parameters for the years 2020–2024 at Dehradun. The study shows that the values of four parameters namely, Temperature, Total Coliform, TDS, and Hardness are increasing yearly, whereas the values of pH and DO are not rising heavily. The considered physicochemical parameters for the study are TDS, Chlorides, Alkalinity, DO, Temperature, COD, BOD, pH, Magnesium, Hardness, Total Coliform, and Calcium. As per the results and trend analysis, the value of total coliform, temperature, and hardness are rising year by year, which is a matter of concern. The values of the considered physicochemical parameters have been monitored using various monitoring stations installed by the Central Pollution Control Board (CPCB), India.
  •  
4.
  • Shrivastava, Garima, et al. (författare)
  • Targeting LIN28 : a new hope in prostate cancer theranostics
  • 2021
  • Ingår i: Future Oncology. - : Future Medicine. - 1479-6694 .- 1744-8301. ; 17:29, s. 3873-3880
  • Tidskriftsartikel (refereegranskat)abstract
    • The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.
  •  
5.
  • Syed, Faisal Waqar, et al. (författare)
  • Hot deformation characteristics and microstructure evolution of Ti-5Al-3Mo-1.5V alloy
  • 2021
  • Ingår i: INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS. - : Springer Science and Business Media LLC. - 0975-5616 .- 0975-0770. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed investigation was conducted to study the concurrent effect of temperature and strain rate on the microstructure evolution in Ti-5Al-3Mo-1.5V dual-phase Titanium alloy. By applying varying strain rates from 10-3 to 10 s-1between 1098 and 1298 K at an interval of 50 K, isothermal compression characteristics and microstructural changes were recorded. The sizes of globules, concentrated predominantly at the lamellar kinks, were found to be inversely proportional to the strain rate. Further, a dynamic material model was employed to assess and plot the processing map displaying the safe hot working regime. The apparent hot-working activation energy in the alpha+ beta and beta phase field was 636 kJ/mol and 379 kJ/mol, respectively. A higher activation energy than the self-diffusion threshold of the alpha+beta and beta field was attributed to lamellae breakup and dynamic recrystallization in the respective phase fields. The microstructure analysis and identified softening mechanisms further helped in concluding the safe hot working regime to be 1248 K and 10(-3) s(-1).
  •  
6.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
7.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
8.
  • Aljabali, Alaa A. A., et al. (författare)
  • The viral capsid as novel nanomaterials for drug delivery
  • 2021
  • Ingår i: Future Science OA. - : Future Science Ltd. - 2056-5623. ; 7:9
  • Forskningsöversikt (refereegranskat)abstract
    • The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging. Lay abstract: The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging. Here we performed a comprehensive database search to review findings in this area, demonstrating that viral nanostructures possess unique properties that make them ideal for applications in diagnostics, cell labeling, contrasting agents and drug delivery structures.
  •  
9.
  • Caldararu, Octav, et al. (författare)
  • Are crystallographic : B-factors suitable for calculating protein conformational entropy?
  • 2019
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 21:33, s. 18149-18160
  • Tidskriftsartikel (refereegranskat)abstract
    • Conformational entropies are of great interest when studying the binding of small ligands to proteins or the interaction of proteins. Unfortunately, there are no experimental methods available to measure conformational entropies of all groups in a protein. Instead, they are normally estimated from molecular dynamics (MD) simulations, although such methods show problems with convergence and correlation of motions, and depend on the accuracy of the underlying potential-energy function. Crystallographic atomic displacement parameters (also known as B-factors) are available in all crystal structures and contain information about the atomic fluctuations, which can be converted to entropies. We have studied whether B-factors can be employed to extract conformational entropies for proteins by comparing such entropies to those measured by NMR relaxation experiments or obtained from MD simulations in solution or in the crystal. Unfortunately, our results show that B-factor entropies are unreliable, because they include the movement and rotation of the entire protein, they exclude correlation of the movements and they include contributions other than the fluctuations, e.g. static disorder, as well as errors in the model and the scattering factors. We have tried to reduce the first problem by employing translation-libration-screw refinement, the second by employing a description of the correlated movement from MD simulations, and the third by studying only the change in entropy when a pair of ligands binds to the same protein, thoroughly re-refining the structures in exactly the same way and using the same set of alternative conformations. However, the experimental B-factors seem to be incompatible with fluctuations from MD simulations and the precision is too poor to give any reliable entropies.
  •  
10.
  • Chatterjee, Tulika, et al. (författare)
  • Type 1 diabetes, COVID-19 vaccines and short-term safety : Subgroup analysis from the global COVAD study
  • 2024
  • Ingår i: Journal of Diabetes Investigation. - : John Wiley & Sons. - 2040-1116 .- 2040-1124. ; 15:1, s. 131-138
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/INTRODUCTION: Coronavirus disease 2019 (COVID-19) vaccinations have been proven to be generally safe in healthy populations. However, the data on vaccine safety in patients with type 1 diabetes are scarce. This study aimed to evaluate the frequency and severity of short-term (<7-day) adverse vaccination events (AEs) and their risk factors among type 1 diabetes patients. MATERIALS AND METHODS: This study analyzed data from the COVID-19 vaccination in Autoimmune Diseases (COVAD) survey database (May to December 2021; 110 collaborators, 94 countries), comparing <7-day COVID-19 vaccine AE among type 1 diabetes patients and healthy controls (HCs). Descriptive statistics; propensity score matching (1:4) using the variables age, sex and ethnicity; and multivariate analyses were carried out.RESULTS: This study analyzed 5,480 completed survey responses. Of all responses, 5,408 were HCs, 72 were type 1 diabetes patients (43 females, 48.0% white European ancestry) and Pfizer was the most administered vaccine (39%). A total of 4,052 (73.9%) respondents had received two vaccine doses. Patients with type 1 diabetes had a comparable risk of injection site pain, minor and major vaccine AEs, as well as associated hospitalizations to HCs. However, type 1 diabetes patients had a higher risk of severe rashes (3% vs 0.4%, OR 8.0, 95% confidence interval 1.7-36), P = 0.007), although reassuringly, these were rare (n = 2 among type 1 diabetes patients).CONCLUSIONS: COVID-19 vaccination was safe and well tolerated in patients with type 1 diabetes with similar AE profiles compared with HCs, although severe rashes were more common in type 1 diabetes patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy