SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kumari P. Hima) "

Sökning: WFRF:(Kumari P. Hima)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumar, S. Anil, et al. (författare)
  • Beyond just being foot soldiers : osmotin like protein ( OLP ) and chitinase ( Chi11 ) genes act as sentinels to confront salt, drought, and fungal stress tolerance in tomato
  • 2016
  • Ingår i: Environmental and Experimental Botany. - : Elsevier. - 0098-8472 .- 1873-7307. ; 132, s. 53-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Osmotin like protein (OLP) and chitinase (Chi11) belong to pathogenesis-related (PR) class of proteins and are induced during both biotic and abiotic stresses. Transgenic tomato was developed with OLP and Chi11 via in vitro and in planta transformation methods. Transgenes integration and transcript levels were confirmed by multiplex PCR, DNA blot, and multiplex reverse transcriptase PCR. Homozygous T2 transgenics when evaluated for salt, drought, and fungal stresses showed enhanced tolerance compared to untransformed controls (UC). Transgenics showed enhanced endochitinase activity and root biomass under normal conditions. Transformants also displayed higher proline content, K+, relative water content, chlorophyll fluorescence, total biomass, vascular conductivity, and fruit yield than the UC under stress conditions. Co-immunoprecipitation revealed that Chi11 co-expresses with phosphofructokinase2 (PFK2), which may play a role in enhanced root biomass. qPCR analysis resulted in higher transcript levels of OLP, Chi11, and PFK2 in transgenics as compared to the untransformed controls. Our findings suggest the use of multiples genes to confer multiple stress tolerance for enhanced crop productivity. This work unveils a new molecular player PFK2, which may play a role in enhanced root biomass.
  •  
2.
  • Sirisha, V. L., et al. (författare)
  • Cloning, characterization and impact of up- and down-regulating subabul cinnamyl alcohol dehydrogenase (CAD) gene on plant growth and lignin profiles in transgenic tobacco
  • 2011
  • Ingår i: Plant growth regulation (Print). - : Springer Nature. - 0167-6903 .- 1573-5087. ; 66:3, s. 239-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Both cDNA including 5′UTR and 3′UTR and genomic clones of cinnamyl alcohol dehydrogenase (CAD) were isolated and characterized from a pulp-yielding leguminous tree Leucaena leucocephala (LlCAD1). The deduced amino acid sequence shared high identity with orthologous sequences of Acacia mangium × Acacia auriculiformis (83%), Medicago sativa (83%), Nicotiana tabaccum (83%) and Aralia cordata (81%). Full length cDNA contained 78 bases of 5′UTR and 283 bases of 3′UTR, while the genomic clone contained 5 exons and 4 introns. Western blot analysis revealed elevated expression of LlCAD1 in seedling roots and shoots compared to leaves. Sense and antisense CAD tobacco transgenics showed increased and reduced CAD activity accompanied by a change in monomeric lignin composition. Histochemical staining of lignin in down-regulated plants suggested an increase in aldehyde units and a decrease in S/G ratio. Down-regulation of CAD resulted in accumulation of syringic, ferulic, p-coumaric and sinapic acids compared to untransformed controls. These observations were validated by anatomical studies of down-regulated transgenic stems which showed thin walled, elongated phloem and xylem fibres, accompanied by a reduction in the density of vessel elements and amount of secondary xylem when compared to untransformed plants. Furthermore, Klason lignin analysis of CAD antisense transgenics showed 7–32% reduced lignin and normal phenotype as compared to untransformed plants. Such a reduction was not noticed in up-regulated transgenics. These results demonstrate a unique opportunity to explore the significant role that down-regulation of CAD gene plays in reducing lignin content thereby offering potential benefits to the pulp and paper industry.
  •  
3.
  • Kumari, P. Hima, et al. (författare)
  • Overexpression of a Plasma Membrane Bound Na+/H+ Antiporter-Like Protein (SbNHXLP) Confers Salt Tolerance and Improves Fruit Yield in Tomato by Maintaining Ion Homeostasis
  • 2017
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A Na+/H+ antiporter-like protein (NHXLP) was isolated from Sorghum bicolor L. (SbNHXLP) and validated by overexpressing in tomato for salt tolerance. Homozygous T2 transgenic lines when evaluated for salt tolerance, accumulated low Na+ and displayed enhanced salt tolerance compared to wild-type plants (WT). This is consistent with the amiloride binding assay of the protein. Transgenics exhibited higher accumulation of proline, K+, Ca2+, improved cambial conductivity, higher PSII, and antioxidative enzyme activities than WT. Fluorescence imaging results revealed lower Na+ and higher Ca2+ levels in transgenic roots. Co-immunoprecipitation experiments demonstrate that SbNHXLP interacts with a Solanum lycopersicum cation proton antiporter protein2 (SlCHX2). qRT-PCR results showed upregulation of SbNHXLP and SlCHX2 upon treatment with 200 mM NaCl and 100 mM potassium nitrate. SlCHX2 is known to be involved in K+ acquisition, and the interaction between these two proteins might help to accumulate more K+ ions, and thus maintain ion homeostasis. These results strongly suggest that plasma membrane bound SbNHXLP involves in Na+ exclusion, maintains ion homeostasis in transgenics in comparison with WT and alleviates NaCl stress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy