SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kumari Rashmi) "

Sökning: WFRF:(Kumari Rashmi)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clark, DW, et al. (författare)
  • Associations of autozygosity with a broad range of human phenotypes
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4957-
  • Tidskriftsartikel (refereegranskat)abstract
    • In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.
  •  
2.
  •  
3.
  • Knutsson, Sofie, et al. (författare)
  • Noncovalent Inhibitors of Mosquito Acetylcholinesterase 1 with Resistance-Breaking Potency
  • 2018
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 61:23, s. 10545-10557
  • Tidskriftsartikel (refereegranskat)abstract
    • Resistance development in insects significantly threatens the important benefits obtained by insecticide usage in vector control of disease-transmitting insects. Discovery of new chemical entities with insecticidal activity is highly desired in order to develop new insecticide candidates. Here, we present the design, synthesis, and biological evaluation of phenoxyacetamide-based inhibitors of the essential enzyme acetylcholinesterase 1 (AChE1). AChE1 is a validated insecticide target to control mosquito vectors of, e.g., malaria, dengue, and Zika virus infections. The inhibitors combine a mosquito versus human AChE selectivity with a high potency also for the resistance-conferring mutation G122S; two properties that have proven challenging to combine in a single compound. Structure activity relationship analyses and molecular dynamics simulations of inhibitor protein complexes have provided insights that elucidate the molecular basis for these properties. We also show that the inhibitors demonstrate in vivo insecticidal activity on disease-transmitting mosquitoes. Our findings support the concept of noncovalent, selective, and resistance-breaking inhibitors of AChE1 as a promising approach for future insecticide development.
  •  
4.
  • Samal, Rashmi R., et al. (författare)
  • Interaction of artemisinin protects the activity of antioxidant enzyme catalase : a biophysical study
  • 2021
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier. - 0141-8130 .- 1879-0003. ; 172, s. 418-428
  • Tidskriftsartikel (refereegranskat)abstract
    • The major antioxidant enzyme catalase is downregulated and the enzyme activity is compromised in various disease conditions such as malarial and cancer. Hence, the restoration and protection of catalase is a promising therapeutic strategy in disease management. In the present study, for the first time we have demonstrated the protective role of well-known anti-malarial drug Artemisinin (ART) on the time and temperature-induced degradation of bovine liver catalase (BLC) activity. The findings at different time intervals and at higher temperature showed the protective role of ART on BLC activity. Molecular docking studies suggested specific binding of ART on BLC through heme group interface which was further supported by cyclic voltammetry and dynamic light scattering study. The stabilization of BLC in presence of ART was mediated through forming a BLC-ART complex with reduced and shifted electrochemical peak and increased hydrodynamic diameter. ART substantially prevents the temperature-induced reduction in α-helical content with simultaneous increment in other secondary structures like antiparallel, parallel, β-turn and random coils. Nevertheless, the protective role of ART was accepted from the enhanced thermal stability and increased Tm value of BLC in presence of ART at higher temperatures. Our results uncover the mechanism of interaction between ART with BLC and suggest the protective role of ART towards spatiotemporal alteration of BLC by preventing the structural and molecular change in BLC. Thus, the findings advocate ART as a potential therapeutic drug for diseases associated with reduced catalase activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy