SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kummer Kurt) "

Sökning: WFRF:(Kummer Kurt)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aristov, Victor Yu., et al. (författare)
  • Graphene Synthesis on Cubic SiC/Si Wafers. Perspectives for Mass Production of Graphene-Based Electronic Devices
  • 2010
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 10:3, s. 992-995
  • Tidskriftsartikel (refereegranskat)abstract
    • The outstanding properties of graphene, a single graphite layer, render it a top candidate for substituting silicon in future electronic devices, The so far exploited synthesis approaches, however, require conditions typically achieved in specialized laboratories and result in graphene sheets whose electronic properties are often altered by interactions with substrate materials. The development of graphene-based technologies requires an economical fabrication method compatible with mass production. Here we demonstrate for the fist Lime the feasibility of graphene synthesis on commercially available cubic SiC/Si substrates of >300 mm in diameter, which result in graphene flakes electronically decoupled from the substrate. After optimization of the preparation procedure, the proposed synthesis method can represent a further big step toward graphene-based electronic technologies.
  •  
2.
  • Braicovich, Lucio, et al. (författare)
  • Determining the electron-phonon coupling in superconducting cuprates by resonant inelastic x-ray scattering: Methods and results on Nd1+xBa2-xCu3O7-δ
  • 2020
  • Ingår i: Physical Review Research. - 2643-1564. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The coupling between lattice vibration quanta and valence electrons can induce charge-density modulations and decisively influence the transport properties of materials, e.g., leading to conventional superconductivity. In high-critical-temperature superconductors, where electronic correlation is the main actor, the actual role of electron-phonon coupling (EPC) is being intensely debated theoretically and investigated experimentally. We present an in-depth study of how the EPC strength can be obtained directly from resonant inelastic x-ray scattering (RIXS) data through the theoretical approach derived by Ament et al. [Europhys. Lett. 95, 27008 (2011)]. The role of the model parameters (e.g., phonon energy ω0, intermediate state lifetime 1/Γ, EPC matrix element M, and detuning energy Ω) is thoroughly analyzed, providing general relations among them that can be used to make quantitative estimates of the dimensionless EPC g=(M/ω0)2 without detailed microscopic modeling. We then apply these methods to very high-resolution Cu L3-edge RIXS spectra of three Nd1+xBa2−xCu3O7−δ films. For the insulating antiferromagnetic parent compound, the value of M as a function of the in-plane momentum transfer is obtained for Cu-O bond-stretching (breathing) and bond-bending (buckling) phonon branches. For the underdoped and the nearly optimally doped samples, the effects of Coulomb screening and of charge-density-wave correlations on M are assessed. In light of the anticipated further improvements of the RIXS experimental resolution, this work provides a solid framework for an exhaustive investigation of the EPC in cuprates and other quantum materials.
  •  
3.
  • Chikina, A., et al. (författare)
  • Valence instability in the bulk and at the surface of the antiferromagnet SmRh2Si2
  • 2017
  • Ingår i: Physical Review B - Condensed Matter and Materials Physics. - 1098-0121. ; 95:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Using resonant angle-resolved photoemission spectroscopy and electron band-structure calculations, we explore the electronic structure and properties of Sm atoms at the surface and in the bulk of the antiferromagnet SmRh2Si2. We show that the Sm atoms reveal weak mixed-valent behavior both in the bulk and at the surface. Although trivalent 4f emission strongly dominates, a small divalent 4f signal near the Fermi energy can be clearly resolved for surface and bulk Sm atoms. This behavior is quite different to most other Sm-based materials which typically experience a surface valence transition to a divalent state of Sm atoms at the surface. This phenomenon is explained in analogy to the isostructural Ce compound, where strong 4f hybridization stabilizes mixed-valent ground state both in the bulk and at the surface, and which were described in the light of the single-impurity Anderson model. Implications for other RERh2Si2 (RE = rare-earth elements) compounds are discussed.
  •  
4.
  • Generalov, Alexander, et al. (författare)
  • Spin Orientation of Two-Dimensional Electrons Driven by Temperature-Tunable Competition of Spin-Orbit and Exchange-Magnetic Interactions
  • 2017
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 17:2, s. 811-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding ways to create and control the spin-dependent properties of two-dimensional electron states (2DESs) is a major challenge for the elaboration of novel spin-based devices. Spin-orbit and exchange-magnetic interactions (SOI and EMI) are two fundamental mechanisms that enable access to the tunability of spin-dependent properties of carriers. The silicon surface of HoRh2Si2 appears to be a unique model system, where concurrent SOI and EMI can be visualized and controlled by varying the temperature. The beauty and simplicity of this system lie in the 4f moments, which act as a multiple tuning instrument on the 2DESs, as the 4f projections parallel and perpendicular to the surface order at essentially different temperatures. Here we show that the SOI locks the spins of the 2DESs exclusively in the surface plane when the 4f moments are disordered: the Rashba-Bychkov effect. When the temperature is gradually lowered and the system experiences magnetic order, the rising EMI progressively competes with the SOI leading to a fundamental change in the spin-dependent properties of the 2DESs. The spins rotate and reorient toward the out-of-plane Ho 4f moments. Our findings show that the direction of the spins and the spin-splitting of the two-dimensional electrons at the surface can be manipulated in a controlled way by using only one parameter: the temperature.
  •  
5.
  • Huttmann, Felix, et al. (författare)
  • Europium Cyclooctatetraene Nanowire Carpets : A Low-Dimensional, Organometallic, and Ferromagnetic Insulator
  • 2019
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 10:5, s. 911-917
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the magnetic and electronic properties of europium cyclooctatetraene (EuCot) nanowires by means of low-temperature X-ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM) and spectroscopy (STS). The EuCot nanowires are prepared in situ on a graphene surface. STS measurements identify EuCot as an insulator with a minority band gap of 2.3 eV. By means of Eu M5,4 edge XMCD, orbital and spin magnetic moments of (-0.1 ± 0.3)μB and (+7.0 ± 0.6)μB, respectively, were determined. Field-dependent measurements of the XMCD signal at the Eu M5 edge show hysteresis for grazing X-ray incidence at 5 K, thus confirming EuCot as a ferromagnetic material. Our density functional theory calculations reproduce the experimentally observed minority band gap. Modeling the experimental results theoretically, we find that the effective interatomic exchange interaction between Eu atoms is on the order of millielectronvolts, that magnetocrystalline anisotropy energy is roughly half as big, and that dipolar energy is approximately ten times lower.
  •  
6.
  • Krieger, G., et al. (författare)
  • Charge and Spin Order Dichotomy in NdNiO2 Driven by the Capping Layer
  • 2022
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 129:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Superconductivity in infinite-layer nickelates holds exciting analogies with that of cuprates, with similar structures and 3d-electron count. Using resonant inelastic x-ray scattering, we studied electronic and magnetic excitations and charge density correlations in Nd1-xSrxNiO2 thin films with and without an SrTiO3 capping layer. We observe dispersing magnons only in the capped samples, progressively dampened at higher doping. We detect an elastic resonant scattering peak in the uncapped x=0 compound at wave vector (∼⅓,0), remindful of the charge order signal in hole doped cuprates. The peak weakens at x=0.05 and disappears in the superconducting x=0.20 film. The role of the capping on the electronic reconstruction far from the interface remains to be understood.
  •  
7.
  • Kummer, Kurt, et al. (författare)
  • Electronic Structure of Genomic DNA: A Photoemission and X-ray Absorption Study.
  • 2010
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 114:29, s. 9645-9652
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure of genomic DNA has been comprehensively characterized by synchrotron-based X-ray absorption and X-ray photoelectron spectroscopy. Both unoccupied and occupied states close to the Fermi level have been unveiled and attributed to particular sites within the DNA structure. A semiconductor-like electronic structure with a band gap of approximately 2.6 eV has been found at which the pi and pi* orbitals of the nucleobase stack make major contributions to the highest occupied and lowest unoccupied molecular orbitals, respectively, in agreement with previous theoretical predictions.
  •  
8.
  • Lu, Haiyu, et al. (författare)
  • Identification of a characteristic doping for charge order phenomena in Bi-2212 cuprates via RIXS
  • 2022
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 106:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying quantum critical points (QCPs) and their associated fluctuations may hold the key to unraveling the unusual electronic phenomena observed in cuprate superconductors. Recently, signatures of quantum fluctuations associated with charge order (CO) have been inferred from the anomalous enhancement of CO excitations that accompany the reduction of the CO order parameter in the superconducting state. To gain more insight into the interplay between CO and superconductivity, here we investigate the doping dependence of this phenomenon throughout the Bi-2212 cuprate phase diagram using resonant inelastic x-ray scattering (RIXS) at the Cu L3 edge. As doping increases, the CO wave vector decreases, saturating near a commensurate value of 0.25 reciprocal lattice unit beyond a characteristic doping pc, where the correlation length becomes shorter than the apparent periodicity (4a0). Such behavior is indicative of the fluctuating nature of the CO; the proliferation of CO excitations in the superconducting state also appears strongest at pc, consistent with expected behavior at a CO QCP. Intriguingly, pc appears to be near optimal doping, where the superconducting transition temperature Tc is maximal.
  •  
9.
  • Martinelli, L., et al. (författare)
  • Collective Nature of Orbital Excitations in Layered Cuprates in the Absence of Apical Oxygens
  • 2024
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 132:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the 3d orbital excitations in CaCuO2 (CCO), Nd2CuO4 (NCO), and La2CuO4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the dxy orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of the orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. Finally, we show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.
  •  
10.
  • Martinelli, Leonardo, et al. (författare)
  • Fractional Spin Excitations in the Infinite-Layer Cuprate CaCuO2
  • 2022
  • Ingår i: Physical Review X. - 2160-3308. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We use resonant inelastic x-ray scattering (RIXS) to investigate the magnetic dynamics of the infinite-layer cuprate CaCuO2. We find that close to the (1/2,0) point, the single magnon decays into a broad continuum of excitations accounting for about 80% of the total magnetic spectral weight. Polarization-resolved RIXS spectra reveal the overwhelming dominance of the spin-flip (Delta S = 1) character of this continuum with respect to the Delta S = 0 multimagnon contributions. Moreover, its incident-energy dependence is identical to that of the magnon, supporting a common physical origin. We propose that the continuum originates from the decay of the magnon into spinon pairs, and we relate it to the exceptionally high ring exchange J(c) similar to J(1) of CaCuO2. In the infinite-layer cuprates, long-range and multisite hopping integrals are very important, and they amplify the 2D quantum magnetism effects in spite of the 3D antiferromagnetic Neel order.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy