SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuneš Petr) "

Sökning: WFRF:(Kuneš Petr)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Felde, Vivian A., et al. (författare)
  • Compositional turnover and variation in Eemian pollen sequences in Europe
  • 2020
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 29:1, s. 101-109
  • Tidskriftsartikel (refereegranskat)abstract
    • The Eemian interglacial represents a natural experiment on how past vegetation with negligible human impact responded to amplified temperature changes compared to the Holocene. Here, we assemble 47 carefully selected Eemian pollen sequences from Europe to explore geographical patterns of (1) total compositional turnover and total variation for each sequence and (2) stratigraphical turnover between samples within each sequence using detrended canonical correspondence analysis, multivariate regression trees, and principal curves. Our synthesis shows that turnover and variation are highest in central Europe (47-55 degrees N), low in southern Europe (south of 45 degrees N), and lowest in the north (above 60 degrees N). These results provide a basis for developing hypotheses about causes of vegetation change during the Eemian and their possible drivers.
  •  
2.
  • Giesecke, Thomas, et al. (författare)
  • Towards mapping the late Quaternary vegetation change of Europe.
  • 2014
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 23:1, s. 75-86
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of well-dated pollen diagrams in Europe has increased considerably over the last 30 years and many of them have been submitted to the European Pollen Database (EPD). This allows for the construction of increasingly precise maps of Holocene vegetation change across the continent. Chronological information in the EPD has been expressed in uncalibrated radiocarbon years, and most chronologies to date are based on this time scale. Here we present new chronologies for most of the datasets stored in the EPD based on calibrated radiocarbon years. Age information associated with pollen diagrams is often derived from the pollen stratigraphy itself or from other sedimentological information. We reviewed these chronological tie points and assigned uncertainties to them. The steps taken to generate the new chronologies are described and the rationale for a new classification system for age uncertainties is introduced. The resulting chronologies are fit for most continental-scale questions. They may not provide the best age model for particular sites, but may be viewed as general purpose chronologies. Taxonomic particularities of the data stored in the EPD are explained. An example is given of how the database can be queried to select samples with appropriate age control as well as the suitable taxonomic level to answer a specific research question.
  •  
3.
  • Kuneš, Petr, et al. (författare)
  • Soil phosphorous as a control of productivity and openness in temperate interglacial forest ecosystems.
  • 2011
  • Ingår i: Journal of Biogeography. - : Wiley. - 0305-0270 .- 1365-2699. ; 38:11, s. 2150-2164
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim  Observations of long chronosequences in forest ecosystems show that, after some millennia of build-up, biomass declines in relation to the slow depletion of soil phosphorus. Plants that dominate during this period of soil impoverishment have specialized strategies for P acquisition, including ectomycorrhiza or root clusters. We use quantitative, pollen-based reconstructions of regional vegetation in four Quaternary warm stages (Holocene, Eemian, Holsteinian, Harreskovian) to test whether inferred forest cover and productivity changes are consistent with long-term modification of soil nutrient pools.Location  Southern Scandinavia (Denmark, southern Sweden).Methods  The REVEALS model was used to estimate regional vegetation abundances of 25 pollen-type-equivalent taxa from pollen records of large sedimentary basins in southernmost Scandinavia. Based on the estimated regional vegetation, we then calculated time-series of Ellenberg indicator values for L (light), R (soil reaction) and N (a productivity proxy). We classified the vegetation records into distinct phases and compared these phases and the samples using hierarchical clustering and ordination.Results  All three interglacials developed coniferous or mixed forests. However, pure deciduous forests were never reached during the Holsteinian, while pure coniferous forests never developed in the Holocene. Above-ground productivity was inferred to be low initially, peaking in the first third of the warm stages and then slowly declining (except during the Holocene). Dominant trees of the post-peak phases all had ectomycorrhiza as a strategy for P acquisition, indicating that easily accessible P pools had become depleted. Increases in fire regimes may have amplified the inferred final drop in productivity. Mid/late Holocene productivity changes were much influenced by agricultural activities.Main conclusions  REVEALS vegetation estimates combined with Ellenberg indicator values suggest a consistent pattern in warm stages of initially rising productivity, followed by a long and slow decline. The P-acquisition strategies of dominant trees indicate that the decline reflects increasing P depletion of soils.
  •  
4.
  •  
5.
  • Pearce, Elena A., et al. (författare)
  • Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:45
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent of vegetation openness in past European landscapes is widely debated. In particular, the temperate forest biome has traditionally been defined as dense, closed-canopy forest; however, some argue that large herbivores maintained greater openness or even wood-pasture conditions. Here, we address this question for the Last Interglacial period (129,000–116,000 years ago), before Homo sapiens–linked megafauna declines and anthropogenic landscape transformation. We applied the vegetation reconstruction method REVEALS to 96 Last Interglacial pollen records. We found that light woodland and open vegetation represented, on average, more than 50% cover during this period. The degree of openness was highly variable and only partially linked to climatic factors, indicating the importance of natural disturbance regimes. Our results show that the temperate forest biome was historically heterogeneous rather than uniformly dense, which is consistent with the dependency of much of contemporary European biodiversity on open vegetation and light woodland.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy