SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuosmanen Niina) "

Sökning: WFRF:(Kuosmanen Niina)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Helmens, Karin F., et al. (författare)
  • Warm summers and rich biotic communities during N-Hemisphere deglaciation
  • 2018
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 167, s. 61-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed studies on fossil remains of plants or animals in glacial lake sediments are rare. As a result, environmental conditions right at the moment of deglaciation of the large N-Hemisphere ice-sheets remain largely unknown. Here we study three deglacial phases of the Fennoscandian Ice Sheet as a unique, repeated element in a long sediment record preserved at Soldl in northern Finland. We summarize extensive multi-proxy data (diatoms, phytoliths, chironomids, pollen, spores, non-pollen palynomorphs, macrofossils, lithology, loss-on-ignition, C/N) obtained on glacial lake sediments dated to the early Holocene (ca. 10 kyr BP), early MIS 3 (ca. 50 kyr BP) and early MIS 5a (ca. 80 kyr BP). In contrast to the common view of an unproductive ice-marginal environment, our study reconstructs rich ecosystems both in the glacial lake and along the shores with forest on recently deglaciated land. Higher than present-day summer temperatures are reconstructed based on a large variety of aquatic taxa. Rich biota developed due to the insolation-induced postglacial warming and high nutrient levels, the latter resulting from erosion of fresh bedrock and sediment, leaching of surface soils, decay of plant material under shallow water conditions, and sudden decreases in lake volume. Aquatic communities responded quickly to deglaciation and warm summers and reflect boreal conditions, in contrast to the terrestrial ecosystem which responded with some delay probably due to time required for slow soil formation processes. Birch forest is reconstructed upon deglaciation of the large LGM ice-sheet and shrub tundra following the probably faster melting smaller MIS 4 and MIS 5b ice-sheets. Our study shows that glacial lake sediments can provide valuable palaeo-environmental data, that aquatic biota and terrestrial vegetation rapidly accommodated to new environmental conditions during deglaciation, and that glacial lake ecosystems, and the carbon stored in their sediments, should be included in earth system modeling.
  •  
3.
  • Helmens, Karin, et al. (författare)
  • Prolonged interglacial warmth during the Last Glacial in northern Europe
  • 2021
  • Ingår i: Boreas. - : John Wiley & Sons. - 0300-9483 .- 1502-3885. ; 50, s. 331-350
  • Tidskriftsartikel (refereegranskat)abstract
    • Few fossil-based environmental and climate records in northern Europe are dated to Marine Isotope Stage (MIS) 5a around 80 ka BP. We here present multiple environmental and climate proxies obtained froma lake sequence of MIS 5a age in the Sokli basin (northern Finland). Pollen/spores, plant macrofossils, NPPs (e.g. green algae), bryozoa, diatoms and chironomids allowed an exceptionally detailed reconstruction of aquatic and telmatic ecosystem successions related to the development of the Sokli Ice Lake and subsequent infilling of a relatively small and shallow lake confined to the Sokli basin. A regional vegetation development typical for the early half of an interglacial is recorded by the pollen, stomata and plant macrofossil data. Reconstructions of July temperatures based on pollen assemblages suffer from a large contribution of local pollen from the lake’s littoral zone. Summer temperatures reaching present-day values, inferred for the upper part of the lake sequence, however, agree with the establishment of pine-dominated boreal forest indicated by the plant fossil data. Habitat preferences also influence the climate record based onchironomids. Nevertheless, the climate optima of the predominant intermediate- to warm-water chironomid taxa suggest July temperatures exceeding present-day values by up to several degrees, in line with climate inferences from a variety of aquatic and wetland plant indicator species. The disequilibrium between regional vegetation development and warm, insolation-forced summers is also reported for Early Holocene records from northern Fennoscandia. The MIS 5a sequence is the last remaining fossil-bearing deposit in the late Quaternary basin infill at Sokli to be studied using multi-proxy evidence. A unique detailed climate record for MIS5 is now available for formerly glaciated northern Europe. Our studies indicate that interglacial conditions persisted into MIS 5a, in agreement with data for large parts of the European mainland, shortening the Last Glacial by some 50 ka to MIS 4-2.
  •  
4.
  • Kuosmanen, Niina, et al. (författare)
  • The role of climate, forest fires and human population size in Holocene vegetation dynamics in Fennoscandia
  • 2018
  • Ingår i: Journal of Vegetation Science. - : Wiley-Blackwell. - 1100-9233 .- 1654-1103. ; 29:3, s. 382-392
  • Tidskriftsartikel (refereegranskat)abstract
    • QuestionsWe investigated the changing role of climate, forest fires and human population size in the broad-scale compositional changes in Holocene vegetation dynamics before and after the onset of farming in Sweden (at 6,000cal yr BP) and in Finland (at 4,000calyr BP). LocationSouthern and central Sweden, SW and SE Finland. MethodsHolocene regional plant abundances were reconstructed using the REVEALS model on selected fossil pollen records from lakes. The relative importance of climate, fires and human population size on changes in vegetation composition was assessed using variation partitioning. Past climate variable was derived from the LOVECLIM climate model. Fire variable was reconstructed from sedimentary charcoal records. Estimated trend in human population size was based on the temporal distribution of archaeological radiocarbon dates. ResultsClimate explains the highest proportion of variation in vegetation composition during the whole study period in Sweden (10,000-4,000cal yr BP) and in Finland (10,000-1,000cal yr BP), and during the pre-agricultural period. In general, fires explain a relatively low proportion of variation. Human population size has significant effect on vegetation dynamics after the onset of farming and explains the highest variation in vegetation in S Sweden and SW Finland. ConclusionsMesolithic hunter-gatherer populations did not significantly affect vegetation composition in Fennoscandia, and climate was the main driver of changes at that time. Agricultural communities, however, had greater effect on vegetation dynamics, and the role of human population size became a more important factor during the late Holocene. Our results demonstrate that climate can be considered the main driver of long-term vegetation dynamics in Fennoscandia. However, in some regions the influence of human population size on Holocene vegetation changes exceeded that of climate and has a longevity dating to the early Neolithic.
  •  
5.
  • Salonen, J. Sakari, et al. (författare)
  • Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Eemian (the Last Interglacial; ca. 129-116 thousand years ago) presents a testbed for assessing environmental responses and climate feedbacks under warmer-than-present boundary conditions. However, climate syntheses for the Eemian remain hampered by lack of data from the high-latitude land areas, masking the climate response and feedbacks in the Arctic. Here we present a high-resolution (sub-centennial) record of Eemian palaeoclimate from northern Finland, with multi-model reconstructions for July and January air temperature. In contrast with the mid-latitudes of Europe, our data show decoupled seasonal trends with falling July and rising January temperatures over the Eemian, due to orbital and oceanic forcings. This leads to an oceanic Late-Eemian climate, consistent with an earlier hypothesis of glacial inception in Europe. The interglacial is further intersected by two strong cooling and drying events. These abrupt events parallel shifts in marine proxy data, linked to disturbances in the North Atlantic oceanic circulation regime.
  •  
6.
  • Salonen, J. Sakari, et al. (författare)
  • Uncovering Holocene climate fluctuations and ancient conifer populations : Insights from a high-resolution multi-proxy record from Northern Finland
  • 2024
  • Ingår i: Global and Planetary Change. - 0921-8181 .- 1872-6364. ; 237
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of abrupt climate events linked to circum-North Atlantic meltwater forcing have been recognised in Holocene paleoclimate data. To address the paucity of proxy records able to characterise robustly the regional impacts of these events, we retrieved a sub-centennial resolution, well-dated core sequence from Lake Kuutsjarvi, northeast Finland. By analysing a range of paleo-environmental proxies (pollen, plant sedimentary ancient DNA, plant macrofossils, conifer stomata, and non-pollen palynomorphs), and supported with proxy-based paleotemperature and moisture reconstructions, we unravel a well-defined sequence of vegetation and climate dynamics over the early-to-middle Holocene. The birch-dominated pioneer vegetation stage was intersected by two transient tree-cover decrease events at 10.4 and 10.1 thousand years ago (ka), likely representing a two-pronged signal of the 10.3 ka climate event. Our data also show a clear signal of the 8.2 ka climate event, previously not well recorded in the European Arctic, with a collapse of the pine-birch forest and replacement by juniper developing in tight synchrony with Greenland isotopic proxies over 8.4-8.0 ka. Supported by climate modelling, severe winter cooling rather than summer might have been driving vegetation disruptions in the early Holocene. The Kuutsjarvi data indicate an early arrival of Norway spruce (Picea abies) by 9.2 ka (pollen, DNA, and stoma finds), as well as the first evidence for Holocene presence of larch (Larix) in Finland, with pollen finds dating to 9.6-5.9 ka.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy