SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuperman S.) "

Sökning: WFRF:(Kuperman S.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Goldfarb, Y, et al. (författare)
  • Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation
  • 2021
  • Ingår i: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 218:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance. By using RNAseq, ATACseq, ChIPseq, and protein analyses, we dissect the underlying mechanisms for their dominancy. Specifically, we show that recessive mutations result in a lack of AIRE protein expression, while the dominant mutations in both PHD domains augment the expression of dysfunctional AIRE with altered capacity to bind chromatin and induce gene expression. Finally, we demonstrate that enhanced AIRE expression is partially due to increased chromatin accessibility of the AIRE proximal enhancer, which serves as a docking site for AIRE binding. Therefore, our data not only elucidate why some AIRE mutations are recessive while others dominant, but also identify an autoregulatory mechanism by which AIRE negatively modulates its own expression.
  •  
8.
  • Blacher, E., et al. (författare)
  • Potential roles of gut microbiome and metabolites in modulating ALS in mice
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 572:7770, s. 474-
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder, in which the clinical manifestations may be influenced by genetic and unknown environmental factors. Here we show that ALS-prone Sod1 transgenic (Sod1-Tg) mice have a pre-symptomatic, vivarium-dependent dysbiosis and altered metabolite configuration, coupled with an exacerbated disease under germ-free conditions or after treatment with broad-spectrum antibiotics. We correlate eleven distinct commensal bacteria at our vivarium with the severity of ALS in mice, and by their individual supplementation into antibiotic-treated Sod1-Tg mice we demonstrate that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS. Furthermore, Sod1-Tg mice that are administered AM are found to accumulate AM-associated nicotinamide in the central nervous system, and systemic supplementation of nicotinamide improves motor symptoms and gene expression patterns in the spinal cord of Sod1-Tg mice. In humans, we identify distinct microbiome and metabolite configurations-including reduced levels of nicotinamide systemically and in the cerebrospinal fluid-in a small preliminary study that compares patients with ALS with household controls. We suggest that environmentally driven microbiome-brain interactions may modulate ALS in mice, and we call for similar investigations in the human form of the disease.
  •  
9.
  • Hakkarainen, M, et al. (författare)
  • The clinical picture of ERCC6L2 disease: from bone marrow failure to acute leukemia
  • 2023
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 141:23, s. 2853-2866
  • Tidskriftsartikel (refereegranskat)abstract
    • Biallelic germline ERCC6L2 variants strongly predispose to bone marrow failure (BMF) and myeloid malignancies characterized by somatic TP53-mutated clones and erythroid predominance. We present a series of 52 subjects (35 families) with ERCC6L2 biallelic germline variants collected retrospectively in 11 centers globally, including follow-up of 1165 person-years. At initial investigations, 32 individuals were diagnosed with BMF and 15 with a hematological malignancy (HM). Subjects presented with 19 different variants across ERCC6L2, and we identified a founder mutation c.1424delT in the Finnish patients. The median age of subjects at baseline was 18 years (range 2-65). Changes in complete blood count (CBC) were mild despite severe bone marrow hypoplasia and somatic TP53 mutations, with no significant difference between subjects with or without (HM). Signs of a progressive disease were increasing TP53 variant allele frequency, dysplasia in megakaryocytes and/or erythroid lineage, and erythroid predominance in bone marrow morphology. The median age at onset of HM was 37.0 years (95% CI: 31.5-42.5; range 12-65). Overall survival (OS) at 3 years was 95% (95% CI: 85-100) and 19% (95% CI: 0-39) for patients with BMF and HM, respectively. Patients with myelodysplastic syndrome or acute myeloid leukemia with mutated TP53 undergoing hematopoietic stem cell transplantation had a poor outcome: 3-year OS is 28% (95% CI: 0-61). Our results demonstrate the importance of early recognition and active surveillance of patients with biallelic germline ERCC6L2 variants.
  •  
10.
  • Hakkarainen, M, et al. (författare)
  • The clinical picture of ERCC6L2 disease: from bone marrow failure to acute leukemia
  • 2023
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 141:23, s. 2853-2866
  • Tidskriftsartikel (refereegranskat)abstract
    • Biallelic germline ERCC6L2 variants strongly predispose to bone marrow failure (BMF) and myeloid malignancies characterized by somatic TP53-mutated clones and erythroid predominance. We present a series of 52 subjects (35 families) with ERCC6L2 biallelic germline variants collected retrospectively in 11 centers globally, including follow-up of 1165 person-years. At initial investigations, 32 individuals were diagnosed with BMF and 15 with a hematological malignancy (HM). Subjects presented with 19 different variants across ERCC6L2, and we identified a founder mutation c.1424delT in the Finnish patients. The median age of subjects at baseline was 18 years (range 2-65). Changes in complete blood count (CBC) were mild despite severe bone marrow hypoplasia and somatic TP53 mutations, with no significant difference between subjects with or without (HM). Signs of a progressive disease were increasing TP53 variant allele frequency, dysplasia in megakaryocytes and/or erythroid lineage, and erythroid predominance in bone marrow morphology. The median age at onset of HM was 37.0 years (95% CI: 31.5-42.5; range 12-65). Overall survival (OS) at 3 years was 95% (95% CI: 85-100) and 19% (95% CI: 0-39) for patients with BMF and HM, respectively. Patients with myelodysplastic syndrome or acute myeloid leukemia with mutated TP53 undergoing hematopoietic stem cell transplantation had a poor outcome: 3-year OS is 28% (95% CI: 0-61). Our results demonstrate the importance of early recognition and active surveillance of patients with biallelic germline ERCC6L2 variants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy