SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kutschke J) "

Sökning: WFRF:(Kutschke J)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Anderson, Beverley H., et al. (författare)
  • Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:3, s. 338-342
  • Tidskriftsartikel (refereegranskat)abstract
    • Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous gamma H2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the alpha-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-alpha primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.
  •  
3.
  • Ai, Jiaoyu, et al. (författare)
  • Bcl3 Couples Cancer Stem Cell Enrichment With Pancreatic Cancer Molecular Subtypes
  • 2021
  • Ingår i: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 161:1, s. 318-332
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown.Methods: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes.Results: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes.Conclusions: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.
  •  
4.
  • Hagberg, C. E., et al. (författare)
  • Flow Cytometry of Mouse and Human Adipocytes for the Analysis of Browning and Cellular Heterogeneity
  • 2018
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 24:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Adipocytes, once considered simple lipid-storing cells, are rapidly emerging as complex cells with many biologically diverse functions. A powerful high-throughput method for analyzing single cells is flow cytometry. Several groups have attempted to analyze and sort freshly isolated adipocytes; however, using an adipocyte-specific reporter mouse, we demonstrate that these studies fail to detect the majority of white adipocytes. We define critical settings required for adipocyte flow cytometry and provide a rigid strategy for analyzing and sorting white and brown adipocyte populations. The applicability of our protocol is shown by sorting mouse adipocytes based on size or UCP1 expression and demonstrating that a subset of human adipocytes lacks the beta(2)-adrenergic receptor, particularly in the insulin-resistant state. In conclusion, the present study confers key technological insights for analyzing and sorting mature adipocytes, opening up numerous downstream research applications.
  •  
5.
  • Keipert, Susanne, 1980-, et al. (författare)
  • Two-stage evolution of mammalian adipose tissue thermogenesis
  • 2024
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 384:6700, s. 1111-1117
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials. 
  •  
6.
  • Li, Q., et al. (författare)
  • Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27, s. 1941-1953
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation. Studies in mature human adipocytes demonstrate that obesity and hyperinsulinemia can induce reentry into the cell cycle and induce senescence.
  •  
7.
  • Livingston, John H, et al. (författare)
  • Leukoencephalopathy with Calcifications and Cysts : A Purely Neurological Disorder Distinct from Coats Plus
  • 2014
  • Ingår i: Neuropediatrics. - : Georg Thieme Verlag KG. - 0174-304X .- 1439-1899. ; 45:3, s. 175-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective With the identification of mutations in the conserved telomere maintenance component 1 (CTC1) gene as the cause of Coats plus (CP) disease, it has become evident that leukoencephalopathy with calcifications and cysts (LCC) is a distinct genetic entity. Patients and Methods A total of 15 patients with LCC were identified from our database of patients with intracranial calcification. The clinical and radiological features are described. Results The median age (range) at presentation was 10 months (range, 2 days-54 years). Of the 15 patients, 9 presented with epileptic seizures, 5 with motor abnormalities, and 1 with developmental delay. Motor abnormalities developed in 14 patients and cognitive problems in 13 patients. Dense calcification occurred in the basal ganglia, thalami, dentate nucleus, brain stem, deep gyri, deep white matter, and in a pericystic distribution. Diffuse leukoencephalopathy was present in all patients, and it was usually symmetrical involving periventricular, deep, and sometimes subcortical, regions. Cysts developed in the basal ganglia, thalamus, deep white matter, cerebellum, or brain stem. In unaffected areas, normal myelination was present. No patient demonstrated cerebral atrophy. Conclusion LCC shares the neuroradiological features of CP. However, LCC is a purely neurological disorder distinguished genetically by the absence of mutations in CTC1. The molecular cause(s) of LCC has (have) not yet been determined.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy