SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kwong Chi Wai) "

Sökning: WFRF:(Kwong Chi Wai)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mäkelä, Mikko, et al. (författare)
  • Hydrothermal treatment of grape marc for solid fuel applications
  • 2017
  • Ingår i: Energy Conversion and Management. - : Elsevier. - 0196-8904 .- 1879-2227. ; 145, s. 371-377
  • Tidskriftsartikel (refereegranskat)abstract
    • The treatment and disposal of grape marc, a residue from grape processing, represents a significant economic and environmental challenge for the winemaking industry. Hydrothermal treatment of grape marc could be an efficient way for producing solid fuels on-site at the wineries. In this work the effects of treatment temperature and liquid pH on grape marc char and liquid properties were determined based on laboratory experiments and the combustion characteristics of char were assessed through thermogravimetric analysis and fuel ash classification. The results showed that hydrothermal treatment increased the energy and carbon contents and decreased the ash content of grape marc. The effect of liquid pH was statistically significant (p < 0.05) only for the determined carbon yield of liquid samples. The energy yield from grape marc was maximized at lower treatment temperatures, which also decreased the content of less thermally stable compounds in the attained char. Higher treatment temperatures decreased grape marc solid, carbon and energy yields and led to an increase in thermally labile compounds compared to lower temperatures likely due to the condensation of liquid compounds or volatiles trapped in the pores of char particles. The alkali metal contents of char ash were reduced coupled with an increase in respective phosphorus. Overall the results support the use of hydrothermally treated grape marc in solid fuel applications, if elevated levels of ash phosphorus can be tolerated.
  •  
2.
  • Zhu, Youjian, et al. (författare)
  • Cogasification of Australian Brown Coal with Algae in a Fluidized Bed Reactor
  • 2015
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 29:3, s. 1686-1700
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, the use of algae for CO2 abatement, wastewater treatment, and energy production has increasingly gained attention worldwide. In order to explore the potential of using algae as an alternative fuel as well as the possible challenges related to the algae gasification process, two species of macroalgae, Derbesia tenuissima and Oedogonium sp., and one type of microalgae, Scenedesmus sp. were studied in this research. In this work, Oedogonium sp. was cultivated with two protocols: producing biomass with both high and low levels of nitrogen content. Cogasification of 10 wt % algae with an Australian brown coal was performed in a fluidized bed reactor, and the effects of algae addition on syngas yield, ash composition, and bed agglomeration were investigated. It was found that CO and H-2 yield increased and CO2 yield decreased after adding three types of macroalgae in the coal, with a slight increase of carbon conversion rate, compared to the coal alone experiment. In the case of coal/Scenedesmus sp, the carbon conversion rate decreased with lower CO/CO2/H-2 yield as compared to coal alone. Samples of fly ash, bed ash, and bed material agglomerates were analyzed using scanning electron microscopy combined with an energy dispersive X-ray detector (SEM-EDX) and X-ray diffraction (XRD). It was observed that both the fly ash and bed ash samples from all coal/macroalgae tests contained more Na and K as compared to the coal test. High Ca and Fe contents were also found in the fly ash and bed ash from the coal/Scenedesmus sp. test. Significant differences in the characteristics and compositions of the ash layer on the bed particles were observed from the different tests. Agglomerates were found in the bed material samples after the cogasification tests of coal/Oedogonium N+ and coal/Oedogonium N. The formation of liquid alkalisilicates on the sand particles was considered to be the main reason for agglomeration for the coal/Oedogonium N+ and coal/Oedogonium N tests. Agglomerates of fused ash and tiny silica sand particles were also found in the coal/Scenedesmus sp. test. In this case, however, the formation of a Fe-Al silicate eutectic mixture was proposed to be the main reason for agglomeration. Debersia was suggested to be a potential alternative fuel, which can be cogasified with brown coal without any significant operating problems under the current experimental conditions. However, for the other algae types, appropriate countermeasures are needed to avoid agglomeration and defluidization in the cogasification process.
  •  
3.
  • Zhu, Youjian, et al. (författare)
  • Fluidized bed co-gasification of algae and wood pellets : gas yields and bed agglomeration analysis
  • 2016
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 30:3, s. 1800-1809
  • Tidskriftsartikel (refereegranskat)abstract
    • Algae utilization in energy production has gained increasing attention as a result of its characteristics, such as high productivity, rapid growth rate, and flexible cultivation environment. In this paper, three species of algae, including a fresh water macroalgae, Oedogonium sp., a saltwater macroalgae, Derbersia tenuissima, and a microalgae species, Scenedesmus sp., were studied to explore the potential of using smaller amounts of algae fuels in blends with traditional woody biomasses in the gasification processes. Co-gasification of 10 wt % algae and 90 wt % Swedish wood pellets was performed in a fluidized bed reactor. The effects of algae addition on the syngas yield and carbon conversion rate were investigated. The addition of 10 wt % algae in wood increased the CO, H2, and CH4 yields by 3–20, 6–31, and 9–20%, respectively. At the same time, it decreased the CO2 yield by 3–18%. The carbon conversion rates were slightly increased with the addition of 10 wt % macroalgae in wood, but the microalgae addition resulted in a decrease of the carbon conversion rate by 8%. Meanwhile, the collected fly ash and bed material samples were analyzed using scanning electron microscopy combined with an energy-dispersive X-ray detector (SEM–EDX) and X-ray diffraction (XRD) technique. The fly ashes of wood/marcoalgae tests showed a higher Na content with lower Si and Ca contents compared to the wood test. The gasification tests were scheduled to last 4 h; however, only wood and wood/Derbersia gasification experiments were carried out without significant operational problems. The gasification of 10 wt % Oedogonium N+ and Oedogonium N– led to defluidization of the bed in less than 1 h, and the wood/Scenedesmus (WD/SA) test was stopped after 1.8 h as a result of severe agglomeration. It was found that the algae addition had a remarkable influence on the characteristics and compositions of the coating layer. The coating layer formation and bed agglomeration mechanism of wood/macroalgae was initiated by the reaction of alkali compounds with the bed particles to form low-temperature melting silicates (inner layer). For the WD/SA test, the agglomeration was influenced by both the composition of the original algae fuel as well as the external mineral contaminations. In summary, the operational problems experienced during the co-gasification tests of different algae–wood mixtures were assigned to the specific ash compositions of the different fuel mixtures. This showed the need for countermeasures, specifically to balance the high alkali content, to reach stable operation in a fluidized bed gasifier.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy